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16.4 Poincaré Recurrence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 338

16.5 Poisson Brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

16.6 Canonical Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

16.6.1 Point transformations in Lagrangian mechanics . . . . . . . . . . . 340

16.6.2 Canonical transformations in Hamiltonian mechanics . . . . . . . . 342

16.6.3 Hamiltonian evolution . . . . . . . . . . . . . . . . . . . . . . . . . 342

16.6.4 Symplectic structure . . . . . . . . . . . . . . . . . . . . . . . . . . 343

16.6.5 Generating functions for canonical transformations . . . . . . . . . 344

16.7 Hamilton-Jacobi Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

16.7.1 The action as a function of coordinates and time . . . . . . . . . . . 347

16.7.2 The Hamilton-Jacobi equation . . . . . . . . . . . . . . . . . . . . . 349

16.7.3 Time-independent Hamiltonians . . . . . . . . . . . . . . . . . . . . 350

16.7.4 Example: one-dimensional motion . . . . . . . . . . . . . . . . . . . 351



CONTENTS xi

16.7.5 Separation of variables . . . . . . . . . . . . . . . . . . . . . . . . . 351

16.7.6 Example #2 : point charge plus electric field . . . . . . . . . . . . . 353

16.7.7 Example #3 : Charged Particle in a Magnetic Field . . . . . . . . . 355

16.8 Action-Angle Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

16.8.1 Circular Phase Orbits: Librations and Rotations . . . . . . . . . . . 357

16.8.2 Action-Angle Variables . . . . . . . . . . . . . . . . . . . . . . . . . 358

16.8.3 Canonical Transformation to Action-Angle Variables . . . . . . . . 359

16.8.4 Example : Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . 360

16.8.5 Example : Particle in a Box . . . . . . . . . . . . . . . . . . . . . . 361

16.8.6 Kepler Problem in Action-Angle Variables . . . . . . . . . . . . . . 364

16.8.7 Charged Particle in a Magnetic Field . . . . . . . . . . . . . . . . . 365

16.8.8 Motion on Invariant Tori . . . . . . . . . . . . . . . . . . . . . . . . 366

16.9 Canonical Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . 367

16.9.1 Canonical Transformations and Perturbation Theory . . . . . . . . 367

16.9.2 Canonical Perturbation Theory for n = 1 Systems . . . . . . . . . . 369

16.9.3 Example : Nonlinear Oscillator . . . . . . . . . . . . . . . . . . . . 372

16.9.4 n > 1 Systems : Degeneracies and Resonances . . . . . . . . . . . . 373

16.9.5 Particle-Wave Interaction . . . . . . . . . . . . . . . . . . . . . . . . 375

16.10 Adiabatic Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

16.10.1 Example: mechanical mirror . . . . . . . . . . . . . . . . . . . . . . 379

16.10.2 Example: magnetic mirror . . . . . . . . . . . . . . . . . . . . . . . 380

16.10.3 Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

16.11 Appendix : Canonical Perturbation Theory . . . . . . . . . . . . . . . . . . 382

17 Physics 110A-B Exams 385

17.1 F05 Physics 110A Midterm #1 . . . . . . . . . . . . . . . . . . . . . . . . . 386

17.2 F05 Physics 110A Midterm #2 . . . . . . . . . . . . . . . . . . . . . . . . . 390

17.3 F05 Physics 110A Final Exam . . . . . . . . . . . . . . . . . . . . . . . . . 397

17.4 F07 Physics 110A Midterm #1 . . . . . . . . . . . . . . . . . . . . . . . . . 405



xii CONTENTS

17.5 F07 Physics 110A Midterm #2 . . . . . . . . . . . . . . . . . . . . . . . . . 411

17.6 F07 Physics 110A Final Exam . . . . . . . . . . . . . . . . . . . . . . . . . 415

17.7 W08 Physics 110B Midterm Exam . . . . . . . . . . . . . . . . . . . . . . . 425

17.8 W08 Physics 110B Final Exam . . . . . . . . . . . . . . . . . . . . . . . . . 430



0.1. PREFACE xiii

0.1 Preface

These lecture notes are based on material presented in both graduate and undergraduate
mechanics classes which I have taught on several occasions during the past 20 years at
UCSD (Physics 110A-B and Physics 200A-B).

The level of these notes is appropriate for an advanced undergraduate or a first year graduate
course in classical mechanics. In some instances, I’ve tried to collect the discussion of more
advanced material into separate sections, but in many cases this proves inconvenient, and
so the level of the presentation fluctuates.

I have included many worked examples within the notes, as well as in the final chapter,
which contains solutions from Physics 110A and 110B midterm and final exams. In my view,
problem solving is essential toward learning basic physics. The geniuses among us might
apprehend the fundamentals through deep contemplation after reading texts and attending
lectures. The vast majority of us, however, acquire physical intuition much more slowly,
and it is through problem solving that one gains experience in patches which eventually
percolate so as to afford a more global understanding of the subject. A good analogy would
be putting together a jigsaw puzzle: initially only local regions seem to make sense but
eventually one forms the necessary connections so that one recognizes the entire picture.

My presentation and choice of topics has been influenced by many books as well as by my
own professors. I’ve reiterated extended some discussions from other texts, such as Barger
and Olsson’s treatment of the gravitational swing-by effect, and their discussion of rolling
and skidding tops. The figures were, with very few exceptions, painstakingly made using
Keynote and/or SM.

Originally these notes also included material on dynamical systems and on Hamiltonian
mechanics. These sections have now been removed and placed within a separate set of
notes on nonlinear dynamics (Physics 221A).

My only request, to those who would use these notes: please contact me if you find er-
rors or typos, or if you have suggestions for additional material. My email address is
darovas@ucsd.edu. I plan to update and extend these notes as my time and inclination
permit.
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Chapter 1

Introduction to Dynamics

1.1 Introduction and Review

Dynamics is the science of how things move. A complete solution to the motion of a system
means that we know the coordinates of all its constituent particles as functions of time.
For a single point particle moving in three-dimensional space, this means we want to know
its position vector r(t) as a function of time. If there are many particles, the motion is

described by a set of functions ri(t), where i labels which particle we are talking about. So
generally speaking, solving for the motion means being able to predict where a particle will
be at any given instant of time. Of course, knowing the function ri(t) means we can take

its derivative and obtain the velocity vi(t) = dri/dt at any time as well.

The complete motion for a system is not given to us outright, but rather is encoded in a
set of differential equations, called the equations of motion. An example of an equation of
motion is

m
d2x

dt2
= −mg (1.1)

with the solution

x(t) = x0 + v0t− 1
2gt

2 (1.2)

where x0 and v0 are constants corresponding to the initial boundary conditions on the
position and velocity: x(0) = x0, v(0) = v0. This particular solution describes the vertical
motion of a particle of mass m moving near the earth’s surface.

In this class, we shall discuss a general framework by which the equations of motion may
be obtained, and methods for solving them. That “general framework” is Lagrangian Dy-
namics, which itself is really nothing more than an elegant restatement of Isaac Newton’s
Laws of Motion.
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1.1.1 Newton’s laws of motion

Aristotle held that objects move because they are somehow impelled to seek out their
natural state. Thus, a rock falls because rocks belong on the earth, and flames rise because
fire belongs in the heavens. To paraphrase Wolfgang Pauli, such notions are so vague as to
be “not even wrong.” It was only with the publication of Newton’s Principia in 1687 that
a theory of motion which had detailed predictive power was developed.

Newton’s three Laws of Motion may be stated as follows:

I. A body remains in uniform motion unless acted on by a force.

II. Force equals rate of change of momentum: F = dp/dt.

III. Any two bodies exert equal and opposite forces on each other.

Newton’s First Law states that a particle will move in a straight line at constant (possibly
zero) velocity if it is subjected to no forces. Now this cannot be true in general, for suppose
we encounter such a “free” particle and that indeed it is in uniform motion, so that r(t) =
r0 + v0t. Now r(t) is measured in some coordinate system, and if instead we choose
to measure r(t) in a different coordinate system whose origin R moves according to the
function R(t), then in this new “frame of reference” the position of our particle will be

r′(t) = r(t)−R(t)

= r0 + v0t−R(t) . (1.3)

If the acceleration d2R/dt2 is nonzero, then merely by shifting our frame of reference we have
apparently falsified Newton’s First Law – a free particle does not move in uniform rectilinear
motion when viewed from an accelerating frame of reference. Thus, together with Newton’s
Laws comes an assumption about the existence of frames of reference – called inertial frames

– in which Newton’s Laws hold. A transformation from one frame K to another frame K′

which moves at constant velocity V relative to K is called a Galilean transformation. The
equations of motion of classical mechanics are invariant (do not change) under Galilean
transformations.

At first, the issue of inertial and noninertial frames is confusing. Rather than grapple with
this, we will try to build some intuition by solving mechanics problems assuming we are

in an inertial frame. The earth’s surface, where most physics experiments are done, is not

an inertial frame, due to the centripetal accelerations associated with the earth’s rotation
about its own axis and its orbit around the sun. In this case, not only is our coordinate
system’s origin – somewhere in a laboratory on the surface of the earth – accelerating, but
the coordinate axes themselves are rotating with respect to an inertial frame. The rotation
of the earth leads to fictitious “forces” such as the Coriolis force, which have large-scale
consequences. For example, hurricanes, when viewed from above, rotate counterclockwise
in the northern hemisphere and clockwise in the southern hemisphere. Later on in the course
we will devote ourselves to a detailed study of motion in accelerated coordinate systems.

Newton’s “quantity of motion” is the momentum p, defined as the product p = mv of a
particle’s mass m (how much stuff there is) and its velocity (how fast it is moving). In
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order to convert the Second Law into a meaningful equation, we must know how the force
F depends on the coordinates (or possibly velocities) themselves. This is known as a force

law. Examples of force laws include:

Constant force: F = −mg

Hooke’s Law: F = −kx

Gravitation: F = −GMm r̂/r2

Lorentz force: F = qE + q
v

c
×B

Fluid friction (v small): F = −bv .

Note that for an object whose mass does not change we can write the Second Law in the
familiar form F = ma, where a = dv/dt = d2r/dt2 is the acceleration. Most of our initial
efforts will lie in using Newton’s Second Law to solve for the motion of a variety of systems.

The Third Law is valid for the extremely important case of central forces which we will
discuss in great detail later on. Newtonian gravity – the force which makes the planets orbit
the sun – is a central force. One consequence of the Third Law is that in free space two
isolated particles will accelerate in such a way that F1 = −F2 and hence the accelerations
are parallel to each other, with

a1

a2
= −m2

m1
, (1.4)

where the minus sign is used here to emphasize that the accelerations are in opposite
directions. We can also conclude that the total momentum P = p1 + p2 is a constant, a
result known as the conservation of momentum.

1.1.2 Aside : inertial vs. gravitational mass

In addition to postulating the Laws of Motion, Newton also deduced the gravitational force
law, which says that the force Fij exerted by a particle i by another particle j is

Fij = −Gmimj

ri − rj
|ri − rj |3

, (1.5)

where G, the Cavendish constant (first measured by Henry Cavendish in 1798), takes the
value

G = (6.6726 ± 0.0008) × 10−11N ·m2/kg2 . (1.6)

Notice Newton’s Third Law in action: Fij + Fji = 0. Now a very important and special
feature of this “inverse square law” force is that a spherically symmetric mass distribution
has the same force on an external body as it would if all its mass were concentrated at its
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center. Thus, for a particle of mass m near the surface of the earth, we can take mi = m

and mj = Me, with ri − rj ≃ Rer̂ and obtain

F = −mgr̂ ≡ −mg (1.7)

where r̂ is a radial unit vector pointing from the earth’s center and g = GMe/R2
e ≃ 9.8m/s2

is the acceleration due to gravity at the earth’s surface. Newton’s Second Law now says
that a = −g, i.e. objects accelerate as they fall to earth. However, it is not a priori clear
why the inertial mass which enters into the definition of momentum should be the same
as the gravitational mass which enters into the force law. Suppose, for instance, that the
gravitational mass took a different value, m′. In this case, Newton’s Second Law would
predict

a = −m
′

m
g (1.8)

and unless the ratio m′/m were the same number for all objects, then bodies would fall
with different accelerations. The experimental fact that bodies in a vacuum fall to earth at
the same rate demonstrates the equivalence of inertial and gravitational mass, i.e. m′ = m.

1.2 Examples of Motion in One Dimension

To gain some experience with solving equations of motion in a physical setting, we consider
some physically relevant examples of one-dimensional motion.

1.2.1 Uniform force

With F = −mg, appropriate for a particle falling under the influence of a uniform gravita-
tional field, we have md2x/dt2 = −mg, or ẍ = −g. Notation:

ẋ ≡ dx

dt
, ẍ ≡ d2x

dt2
,

˙̈̈
ẍ =

d7x

dt7
, etc. (1.9)

With v = ẋ, we solve dv/dt = −g:

v(t)∫

v(0)

dv =

t∫

0

ds (−g) (1.10)

v(t)− v(0) = −gt . (1.11)

Note that there is a constant of integration, v(0), which enters our solution.
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We are now in position to solve dx/dt = v:

x(t)∫

x(0)

dx =

t∫

0

ds v(s) (1.12)

x(t) = x(0) +

t∫

0

ds
[
v(0)− gs

]
(1.13)

= x(0) + v(0)t − 1
2gt

2 . (1.14)

Note that a second constant of integration, x(0), has appeared.

1.2.2 Uniform force with linear frictional damping

In this case,

m
dv

dt
= −mg − γv (1.15)

which may be rewritten

dv

v +mg/γ
= − γ

m
dt (1.16)

d ln(v +mg/γ) = −(γ/m)dt . (1.17)

Integrating then gives

ln

(
v(t) +mg/γ

v(0) +mg/γ

)
= −γt/m (1.18)

v(t) = −mg
γ

+

(
v(0) +

mg

γ

)
e−γt/m . (1.19)

Note that the solution to the first order ODE mv̇ = −mg − γv entails one constant of
integration, v(0).

One can further integrate to obtain the motion

x(t) = x(0) +
m

γ

(
v(0) +

mg

γ

)
(1− e−γt/m)− mg

γ
t . (1.20)

The solution to the second order ODE mẍ = −mg − γẋ thus entails two constants of
integration: v(0) and x(0). Notice that as t goes to infinity the velocity tends towards

the asymptotic value v = −v∞, where v∞ = mg/γ. This is known as the terminal veloc-

ity. Indeed, solving the equation v̇ = 0 gives v = −v∞. The initial velocity is effectively
“forgotten” on a time scale τ ≡ m/γ.

Electrons moving in solids under the influence of an electric field also achieve a terminal
velocity. In this case the force is not F = −mg but rather F = −eE, where −e is the
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electron charge (e > 0) and E is the electric field. The terminal velocity is then obtained
from

v∞ = eE/γ = eτE/m . (1.21)

The current density is a product:

current density = (number density)× (charge) × (velocity)

j = n · (−e) · (−v∞)

=
ne2τ

m
E . (1.22)

The ratio j/E is called the conductivity of the metal, σ. According to our theory, σ =
ne2τ/m. This is one of the most famous equations of solid state physics! The dissipation
is caused by electrons scattering off impurities and lattice vibrations (“phonons”). In high
purity copper at low temperatures (T <∼ 4K), the scattering time τ is about a nanosecond
(τ ≈ 10−9 s).

1.2.3 Uniform force with quadratic frictional damping

At higher velocities, the frictional damping is proportional to the square of the velocity.
The frictional force is then Ff = −cv2 sgn (v), where sgn (v) is the sign of v: sgn (v) = +1
if v > 0 and sgn (v) = −1 if v < 0. (Note one can also write sgn (v) = v/|v| where |v| is
the absolute value.) Why all this trouble with sgn (v)? Because it is important that the
frictional force dissipate energy, and therefore that Ff be oppositely directed with respect to
the velocity v. We will assume that v < 0 always, hence Ff = +cv2.

Notice that there is a terminal velocity, since setting v̇ = −g+(c/m)v2 = 0 gives v = ±v∞,

where v∞ =
√
mg/c. One can write the equation of motion as

dv

dt
=

g

v2∞
(v2 − v2

∞) (1.23)

and using
1

v2 − v2∞
=

1

2v∞

[
1

v − v∞
− 1

v + v∞

]
(1.24)

we obtain

dv

v2 − v2∞
=

1

2v∞

dv

v − v∞
− 1

2v∞

dv

v + v∞

=
1

2v∞
d ln

(
v∞ − v
v∞ + v

)

=
g

v2∞
dt . (1.25)
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Assuming v(0) = 0, we integrate to obtain

1

2v∞
ln

(
v∞ − v(t)
v∞ + v(t)

)
=

gt

v2∞
(1.26)

which may be massaged to give the final result

v(t) = −v∞ tanh(gt/v∞) . (1.27)

Recall that the hyperbolic tangent function tanh(x) is given by

tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x
ex + e−x

. (1.28)

Again, as t→∞ one has v(t)→ −v∞, i.e. v(∞) = −v∞.

Advanced Digression: To gain an understanding of the constant c, consider a flat surface
of area S moving through a fluid at velocity v (v > 0). During a time ∆t, all the fluid
molecules inside the volume ∆V = S · v∆t will have executed an elastic collision with the
moving surface. Since the surface is assumed to be much more massive than each fluid
molecule, the center of mass frame for the surface-molecule collision is essentially the frame
of the surface itself. If a molecule moves with velocity u is the laboratory frame, it moves
with velocity u − v in the center of mass (CM) frame, and since the collision is elastic, its
final CM frame velocity is reversed, to v − u. Thus, in the laboratory frame the molecule’s
velocity has become 2v − u and it has suffered a change in velocity of ∆u = 2(v − u). The
total momentum change is obtained by multiplying ∆u by the total mass M = ̺∆V , where
̺ is the mass density of the fluid. But then the total momentum imparted to the fluid is

∆P = 2(v − u) · ̺S v∆t (1.29)

and the force on the fluid is

F =
∆P

∆t
= 2S ̺ v(v − u) . (1.30)

Now it is appropriate to average this expression over the microscopic distribution of molec-
ular velocities u, and since on average 〈u〉 = 0, we obtain the result 〈F 〉 = 2S̺v2, where
〈· · · 〉 denotes a microscopic average over the molecular velocities in the fluid. (There is a
subtlety here concerning the effect of fluid molecules striking the surface from either side –
you should satisfy yourself that this derivation is sensible!) Newton’s Third Law then states
that the frictional force imparted to the moving surface by the fluid is Ff = −〈F 〉 = −cv2,
where c = 2S̺. In fact, our derivation is too crude to properly obtain the numerical prefac-
tors, and it is better to write c = µ̺S, where µ is a dimensionless constant which depends
on the shape of the moving object.

1.2.4 Crossed electric and magnetic fields

Consider now a three-dimensional example of a particle of charge q moving in mutually
perpendicular E and B fields. We’ll throw in gravity for good measure. We take E = Ex̂,
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B = Bẑ, and g = −gẑ. The equation of motion is Newton’s 2nd Law again:

m r̈ = mg + qE + q
c ṙ ×B . (1.31)

The RHS (right hand side) of this equation is a vector sum of the forces due to gravity plus
the Lorentz force of a moving particle in an electromagnetic field. In component notation,
we have

mẍ = qE +
qB

c
ẏ (1.32)

mÿ = −qB
c
ẋ (1.33)

mz̈ = −mg . (1.34)

The equations for coordinates x and y are coupled, while that for z is independent and may
be immediately solved to yield

z(t) = z(0) + ż(0) t− 1
2gt

2 . (1.35)

The remaining equations may be written in terms of the velocities vx = ẋ and vy = ẏ:

v̇x = ωc(vy + uD) (1.36)

v̇y = −ωc vx , (1.37)

where ωc = qB/mc is the cyclotron frequency and uD = cE/B is the drift speed for the
particle. As we shall see, these are the equations for a harmonic oscillator. The solution is

vx(t) = vx(0) cos(ωct) +
(
vy(0) + uD

)
sin(ωct) (1.38)

vy(t) = −uD +
(
vy(0) + uD

)
cos(ωct)− vx(0) sin(ωct) . (1.39)

Integrating again, the full motion is given by:

x(t) = x(0) +A sin δ +A sin(ωct− δ) (1.40)

y(r) = y(0)− uD t−A cos δ +A cos(ωct− δ) , (1.41)

where

A =
1

ωc

√
ẋ2(0) +

(
ẏ(0) + uD

)2
, δ = tan−1

(
ẏ(0) + uD

ẋ(0)

)
. (1.42)

Thus, in the full solution of the motion there are six constants of integration:

x(0) , y(0) , z(0) , A , δ , ż(0) . (1.43)

Of course instead of A and δ one may choose as constants of integration ẋ(0) and ẏ(0).

1.3 Pause for Reflection

In mechanical systems, for each coordinate, or “degree of freedom,” there exists a cor-
responding second order ODE. The full solution of the motion of the system entails two
constants of integration for each degree of freedom.



Chapter 2

Systems of Particles

2.1 Work-Energy Theorem

Consider a system of many particles, with positions ri and velocities ṙi. The kinetic energy
of this system is

T =
∑

i

Ti =
∑

i

1
2miṙ

2
i . (2.1)

Now let’s consider how the kinetic energy of the system changes in time. Assuming each
mi is time-independent, we have

dTi
dt

= mi ṙi · r̈i . (2.2)

Here, we’ve used the relation
d

dt

(
A2
)

= 2A · dA
dt

. (2.3)

We now invoke Newton’s 2nd Law, mir̈i = Fi, to write eqn. 2.2 as Ṫi = Fi · ṙi. We integrate

this equation from time tA to tB:

T (B)

i − T (A)

i =

tB∫

tA

dt
dTi
dt

=

tB∫

tA

dtFi · ṙi ≡
∑

i

W (A→B)

i , (2.4)

where W (A→B)

i is the total work done on particle i during its motion from state A to state
B, Clearly the total kinetic energy is T =

∑
i Ti and the total work done on all particles is

W (A→B) =
∑

iW
(A→B)

i . Eqn. 2.4 is known as the work-energy theorem. It says that

In the evolution of a mechanical system, the change in total kinetic energy is equal to the

total work done: T (B) − T (A) = W (A→B).

11



12 CHAPTER 2. SYSTEMS OF PARTICLES

Figure 2.1: Two paths joining points A and B.

2.2 Conservative and Nonconservative Forces

For the sake of simplicity, consider a single particle with kinetic energy T = 1
2mṙ

2. The
work done on the particle during its mechanical evolution is

W (A→B) =

tB∫

tA

dtF · v , (2.5)

where v = ṙ. This is the most general expression for the work done. If the force F depends
only on the particle’s position r, we may write dr = v dt, and then

W (A→B) =

rB∫

rA

dr · F (r) . (2.6)

Consider now the force
F (r) = K1 y x̂+K2 x ŷ , (2.7)

where K1,2 are constants. Let’s evaluate the work done along each of the two paths in fig.
2.1:

W (I) = K1

xB∫

xA

dx yA +K2

yB∫

yA

dy xB = K1 yA (xB − xA) +K2 xB (yB − yA) (2.8)

W (II) = K1

xB∫

xA

dx yB +K2

yB∫

yA

dy xA = K1 yB (xB − xA) +K2 xA (yB − yA) . (2.9)
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Note that in general W (I) 6= W (II). Thus, if we start at point A, the kinetic energy at point
B will depend on the path taken, since the work done is path-dependent.

The difference between the work done along the two paths is

W (I) −W (II) = (K2 −K1) (xB − xA) (yB − yA) . (2.10)

Thus, we see that if K1 = K2, the work is the same for the two paths. In fact, if K1 = K2,
the work would be path-independent, and would depend only on the endpoints. This is
true for any path, and not just piecewise linear paths of the type depicted in fig. 2.1. The
reason for this is Stokes’ theorem:∮

∂C

dℓ · F =

∫

C

dS n̂ ·∇× F . (2.11)

Here, C is a connected region in three-dimensional space, ∂C is mathematical notation for
the boundary of C, which is a closed path1, dS is the scalar differential area element, n̂ is
the unit normal to that differential area element, and ∇× F is the curl of F :

∇× F = det



x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz




=

(
∂Fz
∂y
− ∂Fy

∂z

)
x̂+

(
∂Fx
∂z
− ∂Fz

∂x

)
ŷ +

(
∂Fy
∂x
− ∂Fx

∂y

)
ẑ . (2.12)

For the force under consideration, F (r) = K1 y x̂+K2 x ŷ, the curl is

∇× F = (K2 −K1) ẑ , (2.13)

which is a constant. The RHS of eqn. 2.11 is then simply proportional to the area enclosed
by C. When we compute the work difference in eqn. 2.10, we evaluate the integral

∮
C
dℓ · F

along the path γ−1
II ◦ γI, which is to say path I followed by the inverse of path II. In this

case, n̂ = ẑ and the integral of n̂ ·∇× F over the rectangle C is given by the RHS of eqn.
2.10.

When ∇× F = 0 everywhere in space, we can always write F = −∇U , where U(r) is the
potential energy . Such forces are called conservative forces because the total energy of the
system, E = T +U , is then conserved during its motion. We can see this by evaluating the
work done,

W (A→B) =

rB∫

rA

dr · F (r)

= −
rB∫

rA

dr ·∇U

= U(rA)− U(rB) . (2.14)

1If C is multiply connected, then ∂C is a set of closed paths. For example, if C is an annulus, ∂C is two
circles, corresponding to the inner and outer boundaries of the annulus.
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The work-energy theorem then gives

T (B) − T (A) = U(rA)− U(rB) , (2.15)

which says
E(B) = T (B) + U(rB) = T (A) + U(rA) = E(A) . (2.16)

Thus, the total energy E = T + U is conserved.

2.2.1 Example : integrating F = −∇U

If ∇× F = 0, we can compute U(r) by integrating, viz.

U(r) = U(0)−
r∫

0

dr′ · F (r′) . (2.17)

The integral does not depend on the path chosen connecting 0 and r. For example, we can
take

U(x, y, z) = U(0, 0, 0) −
(x,0,0)∫

(0,0,0)

dx′ Fx(x
′, 0, 0) −

(x,y,0)∫

(x,0,0)

dy′ Fy(x, y
′, 0) −

(x,y,z)∫

(z,y,0)

dz′ Fz(x, y, z
′) . (2.18)

The constant U(0, 0, 0) is arbitrary and impossible to determine from F alone.

As an example, consider the force

F (r) = −ky x̂− kx ŷ − 4bz3 ẑ , (2.19)

where k and b are constants. We have

(
∇× F

)
x

=

(
∂Fz
∂y
− ∂Fy

∂z

)
= 0 (2.20)

(
∇× F

)
y

=

(
∂Fx
∂z
− ∂Fz

∂x

)
= 0 (2.21)

(
∇× F

)
z

=

(
∂Fy
∂x
− ∂Fx

∂y

)
= 0 , (2.22)

so ∇ × F = 0 and F must be expressible as F = −∇U . Integrating using eqn. 2.18, we
have

U(x, y, z) = U(0, 0, 0) +

(x,0,0)∫

(0,0,0)

dx′ k · 0 +

(x,y,0)∫

(x,0,0)

dy′ kxy′ +

(x,y,z)∫

(z,y,0)

dz′ 4bz′3 (2.23)

= U(0, 0, 0) + kxy + bz4 . (2.24)



2.3. CONSERVATIVE FORCES IN MANY PARTICLE SYSTEMS 15

Another approach is to integrate the partial differential equation ∇U = −F . This is in fact
three equations, and we shall need all of them to obtain the correct answer. We start with
the x̂-component,

∂U

∂x
= ky . (2.25)

Integrating, we obtain
U(x, y, z) = kxy + f(y, z) , (2.26)

where f(y, z) is at this point an arbitrary function of y and z. The important thing is that
it has no x-dependence, so ∂f/∂x = 0. Next, we have

∂U

∂y
= kx =⇒ U(x, y, z) = kxy + g(x, z) . (2.27)

Finally, the z-component integrates to yield

∂U

∂z
= 4bz3 =⇒ U(x, y, z) = bz4 + h(x, y) . (2.28)

We now equate the first two expressions:

kxy + f(y, z) = kxy + g(x, z) . (2.29)

Subtracting kxy from each side, we obtain the equation f(y, z) = g(x, z). Since the LHS is
independent of x and the RHS is independent of y, we must have

f(y, z) = g(x, z) = q(z) , (2.30)

where q(z) is some unknown function of z. But now we invoke the final equation, to obtain

bz4 + h(x, y) = kxy + q(z) . (2.31)

The only possible solution is h(x, y) = C + kxy and q(z) = C + bz4, where C is a constant.
Therefore,

U(x, y, z) = C + kxy + bz4 . (2.32)

Note that it would be very wrong to integrate ∂U/∂x = ky and obtain U(x, y, z) = kxy +
C ′, where C ′ is a constant. As we’ve seen, the ‘constant of integration’ we obtain upon
integrating this first order PDE is in fact a function of y and z. The fact that f(y, z) carries
no explicit x dependence means that ∂f/∂x = 0, so by construction U = kxy + f(y, z) is a
solution to the PDE ∂U/∂x = ky, for any arbitrary function f(y, z).

2.3 Conservative Forces in Many Particle Systems

T =
∑

i

1
2miṙ

2
i (2.33)

U =
∑

i

V (ri) +
∑

i<j

v
(
|ri − rj |

)
. (2.34)
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Here, V (r) is the external (or one-body) potential, and v(r−r′) is the interparticle potential,
which we assume to be central, depending only on the distance between any pair of particles.
The equations of motion are

mi r̈i = F
(ext)

i + F (int)

i , (2.35)

with

F
(ext)

i = −∂V (ri)

∂ri
(2.36)

F
(int)

i = −
∑

j

∂v
(
|ri − rj|

)

ri
≡
∑

j

F
(int)

ij . (2.37)

Here, F (int)

ij is the force exerted on particle i by particle j:

F
(int)

ij = −∂v
(
|ri − rj |

)

∂ri
= − ri − rj|ri − rj |

v′
(
|ri − rj |

)
. (2.38)

Note that F (int)

ij = −F (int)

ji , otherwise known as Newton’s Third Law. It is convenient to
abbreviate rij ≡ ri − rj , in which case we may write the interparticle force as

F
(int)

ij = −r̂ij v′
(
rij
)
. (2.39)

2.4 Linear and Angular Momentum

Consider now the total momentum of the system, P =
∑

i pi. Its rate of change is

dP

dt
=
∑

i

ṗi =
∑

i

F
(ext)

i +

F
(int)
ij +F

(int)
ji =0

︷ ︸︸ ︷∑

i6=j
F

(int)

ij = F
(ext)

tot , (2.40)

since the sum over all internal forces cancels as a result of Newton’s Third Law. We write

P =
∑

i

miṙi = MṘ (2.41)

M =
∑

i

mi (total mass) (2.42)

R =

∑
imi ri∑
imi

(center-of-mass) . (2.43)

Next, consider the total angular momentum,

L =
∑

i

ri × pi =
∑

i

miri × ṙi . (2.44)
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The rate of change of L is then

dL

dt
=
∑

i

{
miṙi × ṙi +miri × r̈i

}

=
∑

i

ri × F
(ext)

i +
∑

i6=j
ri × F

(int)

ij

=
∑

i

ri × F
(ext)

i +

rij×F
(int)
ij =0

︷ ︸︸ ︷
1
2

∑

i6=j
(ri − rj)× F

(int)

ij

= N
(ext)

tot . (2.45)

Finally, it is useful to establish the result

T = 1
2

∑

i

mi ṙ
2
i = 1

2MṘ
2 + 1

2

∑

i

mi

(
ṙi − Ṙ

)2
, (2.46)

which says that the kinetic energy may be written as a sum of two terms, those being the
kinetic energy of the center-of-mass motion, and the kinetic energy of the particles relative
to the center-of-mass.

Recall the “work-energy theorem” for conservative systems,

0 =

final∫

initial

dE =

final∫

initial

dT +

final∫

initial

dU

= T (B) − T (A) −
∑

i

∫
dri · Fi ,

(2.47)

which is to say

∆T = T (B) − T (A) =
∑

i

∫
dri · Fi = −∆U . (2.48)

In other words, the total energy E = T + U is conserved:

E =
∑

i

1
2miṙ

2
i +

∑

i

V (ri) +
∑

i<j

v
(
|ri − rj|

)
. (2.49)

Note that for continuous systems, we replace sums by integrals over a mass distribution,
viz. ∑

i

mi φ
(
ri
)
−→

∫
d3r ρ(r)φ(r) , (2.50)

where ρ(r) is the mass density, and φ(r) is any function.
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2.5 Scaling of Solutions for Homogeneous Potentials

2.5.1 Euler’s theorem for homogeneous functions

In certain cases of interest, the potential is a homogeneous function of the coordinates. This
means

U
(
λ r1, . . . , λ rN

)
= λk U

(
r1, . . . , rN

)
. (2.51)

Here, k is the degree of homogeneity of U . Familiar examples include gravity,

U
(
r1, . . . , rN

)
= −G

∑

i<j

mimj

|ri − rj |
; k = −1 , (2.52)

and the harmonic oscillator,

U
(
q1, . . . , qn

)
= 1

2

∑

σ,σ′

Vσσ′ qσ qσ′ ; k = +2 . (2.53)

The sum of two homogeneous functions is itself homogeneous only if the component func-
tions themselves are of the same degree of homogeneity. Homogeneous functions obey a
special result known as Euler’s Theorem, which we now prove. Suppose a multivariable
function H(x1, . . . , xn) is homogeneous:

H(λx1, . . . , λ xn) = λkH(x1, . . . , xn) . (2.54)

Then

d

dλ

∣∣∣∣∣
λ=1

H
(
λx1, . . . , λ xn

)
=

n∑

i=1

xi
∂H

∂xi
= k H (2.55)

2.5.2 Scaled equations of motion

Now suppose the we rescale distances and times, defining

ri = α r̃i , t = β t̃ . (2.56)

Then
dri
dt

=
α

β

dr̃i

dt̃
,

d2ri

dt2
=

α

β2

d2r̃i

dt̃2
. (2.57)

The force Fi is given by

Fi = − ∂

∂ri
U
(
r1, . . . , rN

)

= − ∂

∂(αr̃i)
αk U

(
r̃1, . . . , r̃N

)

= αk−1 F̃i . (2.58)
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Thus, Newton’s 2nd Law says

α

β2
mi

d2r̃i

dt̃2
= αk−1 F̃i . (2.59)

If we choose β such that

We now demand
α

β2
= αk−1 ⇒ β = α1− 1

2
k , (2.60)

then the equation of motion is invariant under the rescaling transformation! This means
that if r(t) is a solution to the equations of motion, then so is α r

(
α

1
2
k−1 t

)
. This gives us

an entire one-parameter family of solutions, for all real positive α.

If r(t) is periodic with period T , the ri(t;α) is periodic with period T ′ = α1− 1
2
k T . Thus,

(
T ′

T

)
=

(
L′

L

)1− 1
2
k

. (2.61)

Here, α = L′/L is the ratio of length scales. Velocities, energies and angular momenta scale
accordingly:

[
v
]

=
L

T
⇒ v′

v
=
L′

L

/
T ′

T
= α

1
2
k (2.62)

[
E
]

=
ML2

T 2
⇒ E′

E
=

(
L′

L

)2/(T ′

T

)2
= αk (2.63)

[
L
]

=
ML2

T
⇒ |L′|

|L| =

(
L′

L

)2/T ′

T
= α(1+ 1

2
k) . (2.64)

As examples, consider:

(i) Harmonic Oscillator : Here k = 2 and therefore

qσ(t) −→ qσ(t;α) = α qσ(t) . (2.65)

Thus, rescaling lengths alone gives another solution.

(ii) Kepler Problem : This is gravity, for which k = −1. Thus,

r(t) −→ r(t;α) = α r
(
α−3/2 t

)
. (2.66)

Thus, r3 ∝ t2, i.e. (
L′

L

)3

=

(
T ′

T

)2

, (2.67)

also known as Kepler’s Third Law.
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2.6 Appendix I : Curvilinear Orthogonal Coordinates

The standard cartesian coordinates are {x1, . . . , xd}, where d is the dimension of space.

Consider a different set of coordinates, {q1, . . . , qd}, which are related to the original coor-

dinates xµ via the d equations

qµ = qµ
(
x1, . . . , xd

)
. (2.68)

In general these are nonlinear equations.

Let ê0
i = x̂i be the Cartesian set of orthonormal unit vectors, and define êµ to be the unit

vector perpendicular to the surface dqµ = 0. A differential change in position can now be
described in both coordinate systems:

ds =

d∑

i=1

ê0
i dxi =

d∑

µ=1

êµ hµ(q) dqµ , (2.69)

where each hµ(q) is an as yet unknown function of all the components qν . Finding the

coefficient of dqµ then gives

hµ(q) êµ =

d∑

i=1

∂xi
∂qµ

ê0
i ⇒ êµ =

d∑

i=1

Mµ i ê
0
i , (2.70)

where

Mµi(q) =
1

hµ(q)

∂xi
∂qµ

. (2.71)

The dot product of unit vectors in the new coordinate system is then

êµ · êν =
(
MM t

)
µν

=
1

hµ(q)hν(q)

d∑

i=1

∂xi
∂qµ

∂xi
∂qν

. (2.72)

The condition that the new basis be orthonormal is then
d∑

i=1

∂xi
∂qµ

∂xi
∂qν

= h2
µ(q) δµν . (2.73)

This gives us the relation

hµ(q) =

√√√√
d∑

i=1

(
∂xi
∂qµ

)2
. (2.74)

Note that

(ds)2 =
d∑

µ=1

h2
µ(q) (dqµ)

2 . (2.75)

For general coordinate systems, which are not necessarily orthogonal, we have

(ds)2 =

d∑

µ,ν=1

gµν(q) dqµ dqν , (2.76)

where gµν(q) is a real, symmetric, positive definite matrix called the metric tensor .
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Figure 2.2: Volume element Ω for computing divergences.

2.6.1 Example : spherical coordinates

Consider spherical coordinates (ρ, θ, φ):

x = ρ sin θ cosφ , y = ρ sin θ sinφ , z = ρ cos θ . (2.77)

It is now a simple matter to derive the results

h2
ρ = 1 , h2

θ = ρ2 , h2
φ = ρ2 sin2θ . (2.78)

Thus,
ds = ρ̂ dρ+ ρ θ̂ dθ + ρ sin θ φ̂ dφ . (2.79)

2.6.2 Vector calculus : grad, div, curl

Here we restrict our attention to d = 3. The gradient ∇U of a function U(q) is defined by

dU =
∂U

∂q1
dq1 +

∂U

∂q2
dq2 +

∂U

∂q3
dq3

≡∇U · ds . (2.80)

Thus,

∇ =
ê1

h1(q)

∂

∂q1
+

ê2

h2(q)

∂

∂q2
+

ê3

h3(q)

∂

∂q3
. (2.81)

For the divergence, we use the divergence theorem, and we appeal to fig. 2.2:
∫

Ω

dV ∇ ·A =

∫

∂Ω

dS n̂ ·A , (2.82)
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where Ω is a region of three-dimensional space and ∂Ω is its closed two-dimensional bound-
ary. The LHS of this equation is

LHS = ∇ ·A · (h1 dq1) (h2 dq2) (h3 dq3) . (2.83)

The RHS is

RHS = A1 h2 h3

∣∣∣
q1+dq1

q1

dq2 dq3 +A2 h1 h3

∣∣∣
q2+dq2

q2

dq1 dq3 +A3 h1 h2

∣∣∣
q1+dq3

q3

dq1 dq2

=

[
∂

∂q1

(
A1 h2 h3

)
+

∂

∂q2

(
A2 h1 h3

)
+

∂

∂q3

(
A3 h1 h2

)]
dq1 dq2 dq3 . (2.84)

We therefore conclude

∇ ·A =
1

h1 h2 h3

[
∂

∂q1

(
A1 h2 h3

)
+

∂

∂q2

(
A2 h1 h3

)
+

∂

∂q3

(
A3 h1 h2

)]
. (2.85)

To obtain the curl ∇×A, we use Stokes’ theorem again,
∫

Σ

dS n̂ ·∇×A =

∮

∂Σ

dℓ ·A , (2.86)

where Σ is a two-dimensional region of space and ∂Σ is its one-dimensional boundary. Now
consider a differential surface element satisfying dq1 = 0, i.e. a rectangle of side lengths

h2 dq2 and h3 dq3. The LHS of the above equation is

LHS = ê1 ·∇×A (h2 dq2) (h3 dq3) . (2.87)

The RHS is

RHS = A3 h3

∣∣∣
q2+dq2

q2

dq3 −A2 h2

∣∣∣
q3+dq3

q3

dq2

=

[
∂

∂q2

(
A3 h3

)
− ∂

∂q3

(
A2 h2

)]
dq2 dq3 . (2.88)

Therefore

(∇×A)1 =
1

h2 h3

(
∂(h3 A3)

∂q2
− ∂(h2 A2)

∂q3

)
. (2.89)

This is one component of the full result

∇×A =
1

h1 h2 h2
det



h1 ê1 h2 ê2 h3 ê3
∂
∂q1

∂
∂q2

∂
∂q3

h1A1 h2A2 h3A3


 . (2.90)

The Laplacian of a scalar function U is given by

∇2U = ∇ ·∇U

=
1

h1 h2 h3

{
∂

∂q1

(
h2 h3

h1

∂U

∂q1

)
+

∂

∂q2

(
h1 h3

h2

∂U

∂q2

)
+

∂

∂q3

(
h1 h2

h3

∂U

∂q3

)}
. (2.91)



2.7. COMMON CURVILINEAR ORTHOGONAL SYSTEMS 23

2.7 Common curvilinear orthogonal systems

2.7.1 Rectangular coordinates

In rectangular coordinates (x, y, z), we have

hx = hy = hz = 1 . (2.92)

Thus

ds = x̂ dx+ ŷ dy + ẑ dz (2.93)

and the velocity squared is

ṡ2 = ẋ2 + ẏ2 + ż2 . (2.94)

The gradient is

∇U = x̂
∂U

∂x
+ ŷ

∂U

∂y
+ ẑ

∂U

∂z
. (2.95)

The divergence is

∇ ·A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

. (2.96)

The curl is

∇×A =

(
∂Az
∂y
− ∂Ay

∂z

)
x̂+

(
∂Ax
∂z
− ∂Az

∂x

)
ŷ +

(
∂Ay
∂x
− ∂Ax

∂y

)
ẑ . (2.97)

The Laplacian is

∇2U =
∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
. (2.98)

2.7.2 Cylindrical coordinates

In cylindrical coordinates (ρ, φ, z), we have

ρ̂ = x̂ cosφ+ ŷ sinφ x̂ = ρ̂ cosφ− φ̂ sinφ dρ̂ = φ̂ dφ (2.99)

φ̂ = −x̂ sinφ+ ŷ cosφ ŷ = ρ̂ sinφ+ φ̂ cosφ dφ̂ = −ρ̂ dφ . (2.100)

The metric is given in terms of

hρ = 1 , hφ = ρ , hz = 1 . (2.101)

Thus

ds = ρ̂ dρ+ φ̂ ρ dφ+ ẑ dz (2.102)

and the velocity squared is

ṡ2 = ρ̇2 + ρ2φ̇2 + ż2 . (2.103)
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The gradient is

∇U = ρ̂
∂U

∂ρ
+
φ̂

ρ

∂U

∂φ
+ ẑ

∂U

∂z
. (2.104)

The divergence is

∇ ·A =
1

ρ

∂(ρAρ)

∂ρ
+

1

ρ

∂Aφ
∂φ

+
∂Az
∂z

. (2.105)

The curl is

∇×A =

(
1

ρ

∂Az
∂φ
− ∂Aφ

∂z

)
ρ̂+

(
∂Aρ
∂z
− ∂Az

∂ρ

)
φ̂+

(
1

ρ

∂(ρAφ)

∂ρ
− 1

ρ

∂Aρ
∂φ

)
ẑ . (2.106)

The Laplacian is

∇2U =
1

ρ

∂

∂ρ

(
ρ
∂U

∂ρ

)
+

1

ρ2

∂2U

∂φ2
+
∂2U

∂z2
. (2.107)

2.7.3 Spherical coordinates

In spherical coordinates (r, θ, φ), we have

r̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ sin θ (2.108)

θ̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ cos θ (2.109)

φ̂ = −x̂ sinφ+ ŷ cosφ , (2.110)

for which

r̂ × θ̂ = φ̂ , θ̂ × φ̂ = r̂ , φ̂× r̂ = θ̂ . (2.111)

The inverse is

x̂ = r̂ sin θ cosφ+ θ̂ cos θ cosφ− φ̂ sinφ (2.112)

ŷ = r̂ sin θ sinφ+ θ̂ cos θ sinφ+ φ̂ cosφ (2.113)

ẑ = r̂ cos θ − θ̂ sin θ . (2.114)

The differential relations are

dr̂ = θ̂ dθ + sin θ φ̂ dφ (2.115)

dθ̂ = −r̂ dθ + cos θ φ̂ dφ (2.116)

dφ̂ = −
(
sin θ r̂ + cos θ θ̂

)
dφ (2.117)

The metric is given in terms of

hr = 1 , hθ = r , hφ = r sin θ . (2.118)

Thus
ds = r̂ dr + θ̂ r dθ + φ̂ r sin θ dφ (2.119)
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and the velocity squared is

ṡ2 = ṙ2 + r2θ̇2 + r2 sin2θ φ̇2 . (2.120)

The gradient is

∇U = r̂
∂U

∂ρ
+
θ̂

r

∂U

∂θ
+

φ̂

r sin θ

∂U

∂φ
. (2.121)

The divergence is

∇ ·A =
1

r2
∂(r2Ar)

r
+

1

r sin θ

∂(sin θ Aθ)

∂θ
+

1

r sin θ

∂Aφ
∂φ

. (2.122)

The curl is

∇×A =
1

r sin θ

(
∂(sin θ Aφ)

∂θ
− ∂Aθ

∂φ

)
r̂ +

1

r

(
1

sin θ

∂Ar
∂φ
− ∂(rAφ)

∂r

)
θ̂

+
1

r

(
∂(rAθ)

∂r
− ∂Ar

∂θ

)
φ̂ . (2.123)

The Laplacian is

∇2U =
1

r2
∂

∂r

(
r2
∂U

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂U

∂θ

)
+

1

r2 sin2θ

∂2U

∂φ2
. (2.124)

2.7.4 Kinetic energy

Note the form of the kinetic energy of a point particle:

T = 1
2m

(
ds

dt

)2
= 1

2m
(
ẋ2 + ẏ2 + ż2

)
(3D Cartesian) (2.125)

= 1
2m
(
ρ̇2 + ρ2φ̇2

)
(2D polar) (2.126)

= 1
2m
(
ρ̇2 + ρ2φ̇2 + ż2

)
(3D cylindrical) (2.127)

= 1
2m
(
ṙ2 + r2θ̇2 + r2 sin2θ φ̇2

)
(3D polar) . (2.128)
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Chapter 3

One-Dimensional Conservative
Systems

3.1 Description as a Dynamical System

For one-dimensional mechanical systems, Newton’s second law reads

mẍ = F (x) . (3.1)

A system is conservative if the force is derivable from a potential: F = −dU/dx. The total
energy,

E = T + U = 1
2mẋ

2 + U(x) , (3.2)

is then conserved. This may be verified explicitly:

dE

dt
=

d

dt

[
1
2mẋ

2 + U(x)
]

=
[
mẍ+ U ′(x)

]
ẋ = 0 . (3.3)

Conservation of energy allows us to reduce the equation of motion from second order to
first order:

dx

dt
= ±

√√√√ 2

m

(
E − U(x)

)
. (3.4)

Note that the constant E is a constant of integration. The ± sign above depends on the
direction of motion. Points x(E) which satisfy

E = U(x) ⇒ x(E) = U−1(E) , (3.5)

where U−1 is the inverse function, are called turning points. When the total energy is E,
the motion of the system is bounded by the turning points, and confined to the region(s)

27
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U(x) ≤ E. We can integrate eqn. 3.4 to obtain

t(x)− t(x0) = ±
√
m

2

x∫

x0

dx′√
E − U(x′)

. (3.6)

This is to be inverted to obtain the function x(t). Note that there are now two constants

of integration, E and x0. Since

E = E0 = 1
2mv

2
0 + U(x0) , (3.7)

we could also consider x0 and v0 as our constants of integration, writing E in terms of x0

and v0. Thus, there are two independent constants of integration.

For motion confined between two turning points x±(E), the period of the motion is given
by

T (E) =
√

2m

x+(E)∫

x−(E)

dx′√
E − U(x′)

. (3.8)

3.1.1 Example : harmonic oscillator

In the case of the harmonic oscillator, we have U(x) = 1
2kx

2, hence

dt

dx
= ±

√
m

2E − kx2
. (3.9)

The turning points are x ± (E) = ±
√

2E/k, for E ≥ 0. To solve for the motion, let us
substitute

x =

√
2E

k
sin θ . (3.10)

We then find

dt =

√
m

k
dθ , (3.11)

with solution

θ(t) = θ0 + ωt , (3.12)

where ω =
√
k/m is the harmonic oscillator frequency. Thus, the complete motion of the

system is given by

x(t) =

√
2E

k
sin(ωt+ θ0) . (3.13)

Note the two constants of integration, E and θ0.
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3.2 One-Dimensional Mechanics as a Dynamical System

Rather than writing the equation of motion as a single second order ODE, we can instead
write it as two coupled first order ODEs, viz.

dx

dt
= v (3.14)

dv

dt
=

1

m
F (x) . (3.15)

This may be written in matrix-vector form, as

d

dt

(
x
v

)
=

(
v

1
m F (x)

)
. (3.16)

This is an example of a dynamical system, described by the general form

dϕ

dt
= V (ϕ) , (3.17)

where ϕ = (ϕ1, . . . , ϕN ) is an N -dimensional vector in phase space. For the model of eqn.
3.16, we evidently have N = 2. The object V (ϕ) is called a vector field . It is itself a vector,
existing at every point in phase space, RN . Each of the components of V (ϕ) is a function
(in general) of all the components of ϕ:

Vj = Vj(ϕ1, . . . , ϕN ) (j = 1, . . . , N) . (3.18)

Solutions to the equation ϕ̇ = V (ϕ) are called integral curves. Each such integral curve
ϕ(t) is uniquely determined by N constants of integration, which may be taken to be the
initial value ϕ(0). The collection of all integral curves is known as the phase portrait of the
dynamical system.

In plotting the phase portrait of a dynamical system, we need to first solve for its motion,
starting from arbitrary initial conditions. In general this is a difficult problem, which can
only be treated numerically. But for conservative mechanical systems in d = 1, it is a trivial
matter! The reason is that energy conservation completely determines the phase portraits.

The velocity becomes a unique double-valued function of position, v(x) = ±
√

2
m

(
E − U(x)

)
.

The phase curves are thus curves of constant energy.

3.2.1 Sketching phase curves

To plot the phase curves,

(i) Sketch the potential U(x).

(ii) Below this plot, sketch v(x;E) = ±
√

2
m

(
E − U(x)

)
.
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Figure 3.1: A potential U(x) and the corresponding phase portraits. Separatrices are shown
in red.

(iii) When E lies at a local extremum of U(x), the system is at a fixed point .

(a) For E slightly above Emin, the phase curves are ellipses.

(b) For E slightly below Emax, the phase curves are (locally) hyperbolae.

(c) For E = Emax the phase curve is called a separatrix .

(iv) When E > U(∞) or E > U(−∞), the motion is unbounded .

(v) Draw arrows along the phase curves: to the right for v > 0 and left for v < 0.

The period of the orbit T (E) has a simple geometric interpretation. The area A in phase
space enclosed by a bounded phase curve is

A(E) =

∮

E

v dx =
√

8
m

x+(E)∫

x−(E)

dx′
√
E − U(x′) . (3.19)

Thus, the period is proportional to the rate of change of A(E) with E:

T = m
∂A
∂E

. (3.20)
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3.3 Fixed Points and their Vicinity

A fixed point (x∗, v∗) of the dynamics satisfies U ′(x∗) = 0 and v∗ = 0. Taylor’s theorem
then allows us to expand U(x) in the vicinity of x∗:

U(x) = U(x∗) + U ′(x∗) (x− x∗) + 1
2U

′′(x∗) (x− x∗)2 + 1
6U

′′′(x∗) (x− x∗)3 + . . . . (3.21)

Since U ′(x∗) = 0 the linear term in δx = x− x∗ vanishes. If δx is sufficiently small, we can
ignore the cubic, quartic, and higher order terms, leaving us with

U(δx) ≈ U0 + 1
2k(δx)

2 , (3.22)

where U0 = U(x∗) and k = U ′′(x∗) > 0. The solutions to the motion in this potential are:

U ′′(x∗) > 0 : δx(t) = δx0 cos(ωt) +
δv0
ω

sin(ωt) (3.23)

U ′′(x∗) < 0 : δx(t) = δx0 cosh(γt) +
δv0
γ

sinh(γt) , (3.24)

where ω =
√
k/m for k > 0 and γ =

√
−k/m for k < 0. The energy is

E = U0 + 1
2m (δv0)

2 + 1
2k (δx0)

2 . (3.25)

For a separatrix, we have E = U0 and U ′′(x∗) < 0. From the equation for the energy, we

obtain δv0 = ±γ δx0. Let’s take δv0 = −γ δx0, so that the initial velocity is directed toward
the unstable fixed point (UFP). I.e. the initial velocity is negative if we are to the right of

the UFP (δx0 > 0) and positive if we are to the left of the UFP (δx0 < 0). The motion of
the system is then

δx(t) = δx0 exp(−γt) . (3.26)

The particle gets closer and closer to the unstable fixed point at δx = 0, but it takes an
infinite amount of time to actually get there. Put another way, the time it takes to get from
δx0 to a closer point δx < δx0 is

t = γ−1 ln

(
δx0

δx

)
. (3.27)

This diverges logarithmically as δx → 0. Generically, then, the period of motion along a

separatrix is infinite.

3.3.1 Linearized dynamics in the vicinity of a fixed point

Linearizing in the vicinity of such a fixed point, we write δx = x − x∗ and δv = v − v∗,
obtaining

d

dt

(
δx
δv

)
=

(
0 1

− 1
m U ′′(x∗) 0

)(
δx
δv

)
+ . . . , (3.28)
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Figure 3.2: Phase curves in the vicinity of centers and saddles.

This is a linear equation, which we can solve completely.

Consider the general linear equation ϕ̇ = Aϕ, where A is a fixed real matrix. Now whenever
we have a problem involving matrices, we should start thinking about eigenvalues and
eigenvectors. Invariably, the eigenvalues and eigenvectors will prove to be useful, if not
essential, in solving the problem. The eigenvalue equation is

Aψα = λαψα . (3.29)

Here ψα is the αth right eigenvector1 of A. The eigenvalues are roots of the characteristic
equation P (λ) = 0, where P (λ) = det(λ · I − A). Let’s expand ϕ(t) in terms of the right
eigenvectors of A:

ϕ(t) =
∑

α

Cα(t)ψα . (3.30)

Assuming, for the purposes of this discussion, that A is nondegenerate, and its eigenvectors
span RN , the dynamical system can be written as a set of decoupled first order ODEs for
the coefficients Cα(t):

Ċα = λα Cα , (3.31)

with solutions

Cα(t) = Cα(0) exp(λαt) . (3.32)

If Re (λα) > 0, Cα(t) flows off to infinity, while if Re (λα) > 0, Cα(t) flows to zero. If

|λα| = 1, then Cα(t) oscillates with frequency Im (λα).

1If A is symmetric, the right and left eigenvectors are the same. If A is not symmetric, the right and left
eigenvectors differ, although the set of corresponding eigenvalues is the same.
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For a two-dimensional matrix, it is easy to show – an exercise for the reader – that

P (λ) = λ2 − Tλ+D , (3.33)

where T = Tr(A) and D = det(A). The eigenvalues are then

λ± = 1
2T ± 1

2

√
T 2 − 4D . (3.34)

We’ll study the general case in Physics 110B. For now, we focus on our conservative me-
chanical system of eqn. 3.28. The trace and determinant of the above matrix are T = 0 and
D = 1

m U ′′(x∗). Thus, there are only two (generic) possibilities: centers, when U ′′(x∗) > 0,
and saddles, when U ′′(x∗) < 0. Examples of each are shown in Fig. 3.1.

3.4 Examples of Conservative One-Dimensional Systems

3.4.1 Harmonic oscillator

Recall again the harmonic oscillator, discussed in lecture 3. The potential energy is U(x) =
1
2kx

2. The equation of motion is

m
d2x

dt2
= −dU

dx
= −kx , (3.35)

where m is the mass and k the force constant (of a spring). With v = ẋ, this may be written
as the N = 2 system,

d

dt

(
x
v

)
=

(
0 1
−ω2 0

)(
x
v

)
=

(
v

−ω2 x

)
, (3.36)

where ω =
√
k/m has the dimensions of frequency (inverse time). The solution is well

known:

x(t) = x0 cos(ωt) +
v0
ω

sin(ωt) (3.37)

v(t) = v0 cos(ωt)− ω x0 sin(ωt) . (3.38)

The phase curves are ellipses:

ω0 x
2(t) + ω−1

0 v2(t) = C , (3.39)

where C is a constant, independent of time. A sketch of the phase curves and of the phase
flow is shown in Fig. 3.3. Note that the x and v axes have different dimensions.

Energy is conserved:
E = 1

2mv
2 + 1

2kx
2 . (3.40)

Therefore we may find the length of the semimajor and semiminor axes by setting v = 0 or
x = 0, which gives

xmax =

√
2E

k
, vmax =

√
2E

m
. (3.41)
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Figure 3.3: Phase curves for the harmonic oscillator.

The area of the elliptical phase curves is thus

A(E) = π xmax vmax =
2πE√
mk

. (3.42)

The period of motion is therefore

T (E) = m
∂A
∂E

= 2π

√
m

k
, (3.43)

which is independent of E.

3.4.2 Pendulum

Next, consider the simple pendulum, composed of a mass point m affixed to a massless rigid
rod of length ℓ. The potential is U(θ) = −mgℓ cos θ, hence

mℓ2 θ̈ = −dU
dθ

= −mgℓ sin θ . (3.44)

This is equivalent to
d

dt

(
θ
ω

)
=

(
ω

−ω2
0 sin θ

)
, (3.45)

where ω = θ̇ is the angular velocity, and where ω0 =
√
g/ℓ is the natural frequency of small

oscillations.

The conserved energy is
E = 1

2 mℓ
2 θ̇2 + U(θ) . (3.46)

Assuming the pendulum is released from rest at θ = θ0,

2E

mℓ2
= θ̇2 − 2ω2

0 cos θ = −2ω2
0 cos θ0 . (3.47)
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Figure 3.4: Phase curves for the simple pendulum. The separatrix divides phase space into
regions of rotation and libration.

The period for motion of amplitude θ0 is then

T
(
θ0
)

=

√
8

ω0

θ0∫

0

dθ√
cos θ − cos θ0

=
4

ω0
K
(
sin2 1

2θ0
)
, (3.48)

where K(z) is the complete elliptic integral of the first kind. Expanding K(z), we have

T
(
θ0
)

=
2π

ω0

{
1 + 1

4 sin2
(

1
2θ0
)

+ 9
64 sin4

(
1
2θ0
)

+ . . .

}
. (3.49)

For θ0 → 0, the period approaches the usual result 2π/ω0, valid for the linearized equation

θ̈ = −ω2
0 θ. As θ0 → π

2 , the period diverges logarithmically.

The phase curves for the pendulum are shown in Fig. 3.4. The small oscillations of the
pendulum are essentially the same as those of a harmonic oscillator. Indeed, within the
small angle approximation, sin θ ≈ θ, and the pendulum equations of motion are exactly
those of the harmonic oscillator. These oscillations are called librations. They involve
a back-and-forth motion in real space, and the phase space motion is contractable to a
point, in the topological sense. However, if the initial angular velocity is large enough, a
qualitatively different kind of motion is observed, whose phase curves are rotations. In this
case, the pendulum bob keeps swinging around in the same direction, because, as we’ll see
in a later lecture, the total energy is sufficiently large. The phase curve which separates
these two topologically distinct motions is called a separatrix .
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3.4.3 Other potentials

Using the phase plotter application written by Ben Schmidel, available on the Physics 110A
course web page, it is possible to explore the phase curves for a wide variety of potentials.
Three examples are shown in the following pages. The first is the effective potential for the
Kepler problem,

Ueff(r) = −k
r

+
ℓ2

2µr2
, (3.50)

about which we shall have much more to say when we study central forces. Here r is the
separation between two gravitating bodies of masses m1,2, µ = m1m2/(m1 + m2) is the

‘reduced mass’, and k = Gm1m2, where G is the Cavendish constant. We can then write

Ueff(r) = U0

{
− 1

x
+

1

2x2

}
, (3.51)

where r0 = ℓ2/µk has the dimensions of length, and x ≡ r/r0, and where U0 = k/r0 =

µk2/ℓ2. Thus, if distances are measured in units of r0 and the potential in units of U0, the
potential may be written in dimensionless form as U(x) = − 1

x + 1
2x2 .

The second is the hyperbolic secant potential,

U(x) = −U0 sech2(x/a) , (3.52)

which, in dimensionless form, is U(x) = −sech2(x), after measuring distances in units of a

and potential in units of U0.

The final example is

U(x) = U0

{
cos
(x
a

)
+

x

2a

}
. (3.53)

Again measuring x in units of a and U in units of U0, we arrive at U(x) = cos(x) + 1
2x.
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Figure 3.5: Phase curves for the Kepler effective potential U(x) = −x−1 + 1
2x

−2.
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Figure 3.6: Phase curves for the potential U(x) = −sech2(x).
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Figure 3.7: Phase curves for the potential U(x) = cos(x) + 1
2x.
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Chapter 4

Linear Oscillations

Harmonic motion is ubiquitous in Physics. The reason is that any potential energy function,
when expanded in a Taylor series in the vicinity of a local minimum, is a harmonic function:

U(~q ) = U(~q ∗) +

N∑

j=1

∇U(~q∗)=0︷ ︸︸ ︷
∂U

∂qj

∣∣∣∣
~q=~q ∗

(qj − q∗j ) + 1
2

N∑

j,k=1

∂2U

∂qj ∂qk

∣∣∣∣
~q=~q ∗

(qj − q∗j ) (qk − q∗k) + . . . , (4.1)

where the {qj} are generalized coordinates – more on this when we discuss Lagrangians. In
one dimension, we have simply

U(x) = U(x∗) + 1
2 U

′′(x∗) (x− x∗)2 + . . . . (4.2)

Provided the deviation η = x − x∗ is small enough in magnitude, the remaining terms in
the Taylor expansion may be ignored. Newton’s Second Law then gives

mη̈ = −U ′′(x∗) η +O(η2) . (4.3)

This, to lowest order, is the equation of motion for a harmonic oscillator. If U ′′(x∗) > 0,
the equilibrium point x = x∗ is stable, since for small deviations from equilibrium the
restoring force pushes the system back toward the equilibrium point. When U ′′(x∗) < 0,
the equilibrium is unstable, and the forces push one further away from equilibrium.

4.1 Damped Harmonic Oscillator

In the real world, there are frictional forces, which we here will approximate by F = −γv.
We begin with the homogeneous equation for a damped harmonic oscillator,

d2x

dt2
+ 2β

dx

dt
+ ω2

0 x = 0 , (4.4)

41
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where γ = 2βm. To solve, write x(t) =
∑

iCi e
−iωit. This renders the differential equation

4.4 an algebraic equation for the two eigenfrequencies ωi, each of which must satisfy

ω2 + 2iβω − ω2
0 = 0 , (4.5)

hence
ω± = −iβ ± (ω2

0 − β2)1/2 . (4.6)

The most general solution to eqn. 4.4 is then

x(t) = C+ e
−iω+t + C− e

−iω−t (4.7)

where C± are arbitrary constants. Notice that the eigenfrequencies are in general complex,
with a negative imaginary part (so long as the damping coefficient β is positive). Thus

e−iω±t decays to zero as t→∞.

4.1.1 Classes of damped harmonic motion

We identify three classes of motion:

(i) Underdamped (ω2
0 > β2)

(ii) Overdamped (ω2
0 < β2)

(iii) Critically Damped (ω2
0 = β2) .

Underdamped motion

The solution for underdamped motion is

x(t) = A cos(νt+ φ) e−βt

ẋ(t) = −ω0A cos
(
νt+ φ+ sin−1(β/ω0)

)
e−βt ,

(4.8)

where ν =
√
ω2

0 − β2, and where A and φ are constants determined by initial conditions.
From x0 = A cos φ and ẋ0 = −βA cosφ− νA sinφ, we have ẋ0 + βx0 = −νA sinφ, and

A =

√

x2
0 +

(
ẋ0 + β x0

ν

)2
, φ = − tan−1

(
ẋ0 + β x0

ν x0

)
. (4.9)

Overdamped motion

The solution in the case of overdamped motion is

x(t) = C e−(β−λ)t +D e−(β+λ)t

ẋ(t) = −(β − λ)C e−(β−λ)t − (β + λ)D e−(β+λ)t ,
(4.10)
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where λ =
√
β2 − ω2

0 and where C and D are constants determined by the initial conditions:

(
1 1

−(β − λ) −(β + λ)

)(
C
D

)
=

(
x0

ẋ0

)
. (4.11)

Inverting the above matrix, we have the solution

C =
(β + λ)x0

2λ
+
ẋ0

2λ
, D = −(β − λ)x0

2λ
− ẋ0

2λ
. (4.12)

Critically damped motion

The solution in the case of critically damped motion is

x(t) = E e−βt + Ft e−βt

ẋ(t) = −
(
βE + (βt− 1)F

)
e−βt .

(4.13)

Thus, x0 = E and ẋ0 = F − βE, so

E = x0 , F = ẋ0 + βx0 . (4.14)

The screen door analogy

The three types of behavior are depicted in fig. 4.1. To concretize these cases in one’s mind,
it is helpful to think of the case of a screen door or a shock absorber. If the hinges on the
door are underdamped, the door will swing back and forth (assuming it doesn’t have a rim
which smacks into the door frame) several times before coming to a stop. If the hinges are
overdamped, the door may take a very long time to close. To see this, note that for β ≫ ω0

we have

√
β2 − ω2

0 = β

(
1− ω2

0

β2

)−1/2

= β

(
1− ω2

0

2β2
− ω4

0

8β4
+ . . .

)
, (4.15)

which leads to

β −
√
β2 − ω2

0 =
ω2

0

2β
+

ω4
0

8β3
+ . . .

β +
√
β2 − ω2

0 = 2β − ω2
0

2β
−+ . . . . (4.16)

Thus, we can write

x(t) = C e−t/τ1 +D e−t/τ2 , (4.17)
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Figure 4.1: Three classifications of damped harmonic motion. The initial conditions are
x(0) = 1, ẋ(0) = 0.

with

τ1 =
1

β −
√
β2 − ω2

0

≈ 2β

ω2
0

(4.18)

τ2 =
1

β +
√
β2 − ω2

0

≈ 1

2β
. (4.19)

Thus x(t) is a sum of exponentials, with decay times τ1,2. For β ≫ ω0, we have that τ1 is

much larger than τ2 – the ratio is τ1/τ2 ≈ 4β2/ω2
0 ≫ 1. Thus, on time scales on the order of

τ1, the second term has completely damped away. The decay time τ1, though, is very long,
since β is so large. So a highly overdamped oscillator will take a very long time to come to
equilbrium.

4.1.2 Remarks on the case of critical damping

Define the first order differential operator

Dt =
d

dt
+ β . (4.20)
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The solution to Dt x(t) = 0 is x̃(t) = Ae−βt, where A is a constant. Note that the commu-

tator of Dt and t is unity: [
Dt , t

]
= 1 , (4.21)

where [A,B] ≡ AB − BA. The simplest way to verify eqn. 4.21 is to compute its action
upon an arbitrary function f(t):

[
Dt , t

]
f(t) =

(
d

dt
+ β

)
t f(t)− t

(
d

dt
+ β

)
f(t)

=
d

dt

(
t f(t)

)
− t d

dt
f(t) = f(t) . (4.22)

We know that x(t) = x̃(t) = Ae−βt satisfies Dt x(t) = 0. Therefore

0 = Dt
[
Dt , t

]
x̃(t)

= D2
t

(
t x̃(t)

)
−Dt t

0︷ ︸︸ ︷
Dt x̃(t)

= D2
t

(
t x̃(t)

)
. (4.23)

We already know that D2
t x̃(t) = DtDt x̃(t) = 0. The above equation establishes that the

second independent solution to the second order ODE D2
t x(t) = 0 is x(t) = t x̃(t). Indeed,

we can keep going, and show that

Dnt
(
tn−1 x̃(t)

)
= 0 . (4.24)

Thus, the n independent solutions to the nth order ODE
(
d

dt
+ β

)n
x(t) = 0 (4.25)

are
xk(t) = Atk e−βt , k = 0, 1, . . . , n − 1 . (4.26)

4.1.3 Phase portraits for the damped harmonic oscillator

Expressed as a dynamical system, the equation of motion ẍ+ 2βẋ + ω2
0x = 0 is written as

two coupled first order ODEs, viz.

ẋ = v

v̇ = −ω2
0 x− 2βv .

(4.27)

In the theory of dynamical systems, a nullcline is a curve along which one component of
the phase space velocity ϕ̇ vanishes. In our case, there are two nullclines: ẋ = 0 and v̇ = 0.
The equation of the first nullcline, ẋ = 0, is simply v = 0, i.e. the first nullcline is the
x-axis. The equation of the second nullcline, v̇ = 0, is v = −(ω2

0/2β)x. This is a line which
runs through the origin and has negative slope. Everywhere along the first nullcline ẋ = 0,
we have that ϕ̇ lies parallel to the v-axis. Similarly, everywhere along the second nullcline
v̇ = 0, we have that ϕ̇ lies parallel to the x-axis. The situation is depicted in fig. 4.2.
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Figure 4.2: Phase curves for the damped harmonic oscillator. Left panel: underdamped
motion. Right panel: overdamped motion. Note the nullclines along x = 0 and v =
−(ω2

0/2β)x, which are shown as dashed lines.

4.2 Damped Harmonic Oscillator with Forcing

When forced, the equation for the damped oscillator becomes

d2x

dt2
+ 2β

dx

dt
+ ω2

0 x = f(t) , (4.28)

where f(t) = F (t)/m. Since this equation is linear in x(t), we can, without loss of generality,
restrict out attention to harmonic forcing terms of the form

f(t) = f0 cos(Ωt+ ϕ0) = Re
[
f0 e

−iϕ0 e−iΩt
]

(4.29)

where Re stands for “real part”. Here, Ω is the forcing frequency.

Consider first the complex equation

d2z

dt2
+ 2β

dz

dt
+ ω2

0 z = f0 e
−iϕ0 e−iΩt . (4.30)

We try a solution z(t) = z0 e
−iΩt. Plugging in, we obtain the algebraic equation

z0 =
f0 e

−iϕ0

ω2
0 − 2iβΩ −Ω2

≡ A(Ω) eiδ(Ω) f0e
−iϕ0 . (4.31)

The amplitude A(Ω) and phase shift δ(Ω) are given by the equation

A(Ω) eiδ(Ω) =
1

ω2
0 − 2iβΩ −Ω2

. (4.32)
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A basic fact of complex numbers:

1

a− ib =
a+ ib

a2 + b2
=
ei tan

−1(b/a)

√
a2 + b2

. (4.33)

Thus,

A(Ω) =
(
(ω2

0 −Ω2)2 + 4β2Ω2
)−1/2

(4.34)

δ(Ω) = tan−1

(
2βΩ

ω2
0 −Ω2

)
. (4.35)

Now since the coefficients β and ω2
0 are real, we can take the complex conjugate of eqn.

4.30, and write

z̈ + 2β ż + ω2
0 z = f0 e

−iϕ0 e−iΩt (4.36)

¨̄z + 2β ˙̄z + ω2
0 z̄ = f0 e

+iϕ0 e+iΩt , (4.37)

where z̄ is the complex conjugate of z. We now add these two equations and divide by two
to arrive at

ẍ+ 2β ẋ+ ω2
0 x = f0 cos(Ωt+ ϕ0) . (4.38)

Therefore, the real, physical solution we seek is

xinh(t) = Re
[
A(Ω) eiδ(Ω) · f0 e

−iϕ0 e−iΩt
]

= A(Ω) f0 cos
(
Ωt+ ϕ0 − δ(Ω)

)
. (4.39)

The quantity A(Ω) is the amplitude of the response (in units of f0), while δ(Ω) is the
(dimensionless) phase lag (typically expressed in radians).

The maximum of the amplitude A(Ω) occurs when A′(Ω) = 0. From

dA

dΩ
= − 2Ω

[
A(Ω)

]3
(
Ω2 − ω2

0 + 2β2
)
, (4.40)

we conclude that A′(Ω) = 0 for Ω = 0 and for Ω = ΩR, where

ΩR =
√
ω2

0 − 2β2 . (4.41)

The solution at Ω = ΩR pertains only if ω2
0 > 2β2, of course, in which case Ω = 0 is a local

minimum and Ω = ΩR a local maximum. If ω2
0 < 2β2 there is only a local maximum, at

Ω = 0. See Fig. 4.3.
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Figure 4.3: Amplitude and phase shift versus oscillator frequency (units of ω0) for β/ω0

values of 0.1 (red), 0.25 (magenta), 1.0 (green), and 2.0 (blue).

Since equation 4.28 is linear, we can add a solution to the homogeneous equation to xinh(t)
and we will still have a solution. Thus, the most general solution to eqn. 4.28 is

x(t) = xinh(t) + xhom(t)

= Re
[
A(Ω) eiδ(Ω) · f0 e

−iϕ0 e−iΩt
]

+ C+ e
−iω+t + C− e

−iω−t

=

xinh(t)
︷ ︸︸ ︷
A(Ω) f0 cos

(
Ωt+ ϕ0 − δ(Ω)

)
+

xhom(t)
︷ ︸︸ ︷
C e−βt cos(νt) +D e−βt sin(νt) , (4.42)

where ν =
√
ω2

0 − β2 as before.

The last two terms in eqn. 4.42 are the solution to the homogeneous equation, i.e. with
f(t) = 0. They are necessary to include because they carry with them the two constants
of integration which always arise in the solution of a second order ODE. That is, C and D
are adjusted so as to satisfy x(0) = x0 and ẋ0 = v0. However, due to their e−βt prefactor,
these terms decay to zero once t reaches a relatively low multiple of β−1. They are called
transients, and may be set to zero if we are only interested in the long time behavior of the
system. This means, incidentally, that the initial conditions are effectively forgotten over a
time scale on the order of β−1.

For ΩR > 0, one defines the quality factor , Q, of the oscillator by Q = ΩR/2β. Q is a rough
measure of how many periods the unforced oscillator executes before its initial amplitude is
damped down to a small value. For a forced oscillator driven near resonance, and for weak
damping, Q is also related to the ratio of average energy in the oscillator to the energy lost
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per cycle by the external source. To see this, let us compute the energy lost per cycle,

∆E = m

2π/Ω∫

0

dt ẋ f(t)

= −m
2π/Ω∫

0

dtΩ Af2
0 sin(Ωt + ϕ0 − δ) cos(Ωt+ ϕ0)

= πAf2
0 m sin δ

= 2πβ mΩA2(Ω) f2
0 , (4.43)

since sin δ(Ω) = 2βΩ A(Ω). The oscillator energy, averaged over the cycle, is

〈
E
〉

=
Ω

2π

2π/Ω∫

0

dt 1
2m
(
ẋ2 + ω2

0 x
2
)

= 1
4m (Ω2 + ω2

0)A
2(Ω) f2

0 . (4.44)

Thus, we have

2π〈E〉
∆E

=
Ω2 + ω2

0

4βΩ
. (4.45)

Thus, for Ω ≈ ΩR and β2 ≪ ω2
0, we have

Q ≈ 2π〈E〉
∆E

≈ ω0

2β
. (4.46)

4.2.1 Resonant forcing

When the damping β vanishes, the response diverges at resonance. The solution to the
resonantly forced oscillator

ẍ+ ω2
0 x = f0 cos(ω0 t+ ϕ0) (4.47)

is given by

x(t) =
f0

2ω0
t sin(ω0 t+ ϕ0)+

xhom(t)
︷ ︸︸ ︷
A cos(ω0 t) +B sin(ω0 t) . (4.48)

The amplitude of this solution grows linearly due to the energy pumped into the oscillator by
the resonant external forcing. In the real world, nonlinearities can mitigate this unphysical,
unbounded response.
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Figure 4.4: An R-L-C circuit which behaves as a damped harmonic oscillator.

4.2.2 R-L-C circuits

Consider the R-L-C circuit of Fig. 4.4. When the switch is to the left, the capacitor is
charged, eventually to a steady state value Q = CV . At t = 0 the switch is thrown to the
right, completing the R-L-C circuit. Recall that the sum of the voltage drops across the
three elements must be zero:

L
dI

dt
+ IR+

Q

C
= 0 . (4.49)

We also have Q̇ = I, hence

d2Q

dt2
+
R

L

dQ

dt
+

1

LC
Q = 0 , (4.50)

which is the equation for a damped harmonic oscillator, with ω0 = (LC)−1/2 and β = R/2L.

The boundary conditions at t = 0 are Q(0) = CV and Q̇(0) = 0. Under these conditions,
the full solution at all times is

Q(t) = CV e−βt
(

cos νt+
β

ν
sin νt

)
(4.51)

I(t) = −CV ω2
0

ν
e−βt sin νt , (4.52)

again with ν =
√
ω2

0 − β2.

If we put a time-dependent voltage source in series with the resistor, capacitor, and inductor,
we would have

L
dI

dt
+ IR+

Q

C
= V (t) , (4.53)

which is the equation of a forced damped harmonic oscillator.
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4.2.3 Examples

Third order linear ODE with forcing

The problem is to solve the equation

Lt x ≡
...
x + (a+ b+ c) ẍ+ (ab+ ac+ bc) ẋ+ abc x = f0 cos(Ωt) . (4.54)

The key to solving this is to note that the differential operator Lt factorizes:

Lt =
d3

dt3
+ (a+ b+ c)

d2

dt2
+ (ab+ ac+ bc)

d

dt
+ abc

=
( d
dt

+ a
)( d

dt
+ b
)( d

dt
+ c
)
, (4.55)

which says that the third order differential operator appearing in the ODE is in fact a
product of first order differential operators. Since

dx

dt
+ αx = 0 =⇒ x(t) = Ae−αx , (4.56)

we see that the homogeneous solution takes the form

xh(t) = Ae−at +B e−bt + C e−ct , (4.57)

where A, B, and C are constants.

To find the inhomogeneous solution, we solve Lt x = f0 e
−iΩt and take the real part. Writing

x(t) = x0 e
−iΩt, we have

Lt x0 e
−iΩt = (a− iΩ) (b− iΩ) (c − iΩ)x0 e

−iΩt (4.58)

and thus

x0 =
f0 e

−iΩt

(a− iΩ)(b− iΩ)(c − iΩ)
≡ A(Ω) eiδ(Ω) f0 e

−iΩt ,

where

A(Ω) =
[
(a2 +Ω2) (b2 +Ω2) (c2 +Ω2)

]−1/2
(4.59)

δ(Ω) = tan−1
(Ω
a

)
+ tan−1

(Ω
b

)
+ tan−1

(Ω
c

)
. (4.60)

Thus, the most general solution to Lt x(t) = f0 cos(Ωt) is

x(t) = A(Ω) f0 cos
(
Ωt− δ(Ω)

)
+Ae−at +B e−bt + C e−ct . (4.61)

Note that the phase shift increases monotonically from δ(0) = 0 to δ(∞) = 3
2π.
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Figure 4.5: A driven L-C-R circuit, with V (t) = V0 cos(ωt).

Mechanical analog of RLC circuit

Consider the electrical circuit in fig. 4.5. Our task is to construct its mechanical analog.
To do so, we invoke Kirchoff’s laws around the left and right loops:

L1 İ1 +
Q1

C1
+R1 (I1 − I2) = 0 (4.62)

L2 İ2 +R2 I2 +R1 (I2 − I1) = V (t) . (4.63)

Let Q1(t) be the charge on the left plate of capacitor C1, and define

Q2(t) =

t∫

0

dt′ I2(t
′) . (4.64)

Then Kirchoff’s laws may be written

Q̈1 +
R1

L1
(Q̇1 − Q̇2) +

1

L1C1
Q1 = 0 (4.65)

Q̈2 +
R2

L2
Q̇2 +

R1

L2
(Q̇2 − Q̇1) =

V (t)

L2
. (4.66)

Now consider the mechanical system in Fig. 4.6. The blocks have masses M1 and M2.
The friction coefficient between blocks 1 and 2 is b1, and the friction coefficient between
block 2 and the floor is b2. Here we assume a velocity-dependent frictional force Ff = −bẋ,
rather than the more conventional constant Ff = −µW , where W is the weight of an
object. Velocity-dependent friction is applicable when the relative velocity of an object and
a surface is sufficiently large. There is a spring of spring constant k1 which connects block 1
to the wall. Finally, block 2 is driven by a periodic acceleration f0 cos(ωt). We now identify

X1 ↔ Q1 , X2 ↔ Q2 , b1 ↔
R1

L1
, b2 ↔

R2

L2
, k1 ↔

1

L1C1
, (4.67)
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Figure 4.6: The equivalent mechanical circuit for fig. 4.5.

as well as f(t)↔ V (t)/L2.

The solution again proceeds by Fourier transform. We write

V (t) =

∞∫

−∞

dω

2π
V̂ (ω) e−iωt (4.68)

and
{
Q1(t)

Î2(t)

}
=

∞∫

−∞

dω

2π

{
Q̂1(ω)

Î2(ω)

}
e−iωt (4.69)

The frequency space version of Kirchoff’s laws for this problem is

Ĝ(ω)︷ ︸︸ ︷

−ω2 − iω R1/L1 + 1/L1 C1 R1/L1

iω R1/L2 −iω + (R1 +R2)/L2





Q̂1(ω)

Î2(ω)


 =




0

V̂ (ω)/L2


 (4.70)

The homogeneous equation has eigenfrequencies given by the solution to det Ĝ(ω) = 0,
which is a cubic equation. Correspondingly, there are three initial conditions to account
for: Q1(0), I1(0), and I2(0). As in the case of the single damped harmonic oscillator, these
transients are damped, and for large times may be ignored. The solution then is



Q̂1(ω)

Î2(ω)


 =



−ω2 − iω R1/L1 + 1/L1 C1 R1/L1

iω R1/L2 −iω + (R1 +R2)/L2



−1


0

V̂ (ω)/L2


 .

(4.71)

To obtain the time-dependent Q1(t) and I2(t), we must compute the Fourier transform back
to the time domain.
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4.3 General solution by Green’s function method

For a general forcing function f(t), we solve by Fourier transform. Recall that a function
F (t) in the time domain has a Fourier transform F̂ (ω) in the frequency domain. The relation
between the two is:1

F (t) =

∞∫

−∞

dω

2π
e−iωt F̂ (ω) ⇐⇒ F̂ (ω) =

∞∫

−∞

dt e+iωt F (t) . (4.72)

We can convert the differential equation 4.3 to an algebraic equation in the frequency
domain, x̂(ω) = Ĝ(ω) f̂(ω), where

Ĝ(ω) =
1

ω2
0 − 2iβω − ω2

(4.73)

is the Green’s function in the frequency domain. The general solution is written

x(t) =

∞∫

−∞

dω

2π
e−iωt Ĝ(ω) f̂(ω) + xh(t) , (4.74)

where xh(t) =
∑

iCi e
−iωit is a solution to the homogeneous equation. We may also write

the above integral over the time domain:

x(t) =

∞∫

−∞

dt′G(t− t′) f(t′) + xh(t) (4.75)

G(s) =

∞∫

−∞

dω

2π
e−iωs Ĝ(ω)

= ν−1 exp(−βs) sin(νs)Θ(s) (4.76)

where Θ(s) is the step function,

Θ(s) =

{
1 if s ≥ 0
0 if s < 0

(4.77)

where once again ν ≡
√
ω2

0 − β2.

Example: force pulse

Consider a pulse force

f(t) = f0 Θ(t)Θ(T − t) =

{
f0 if 0 ≤ t ≤ T
0 otherwise.

(4.78)

1Different texts often use different conventions for Fourier and inverse Fourier transforms. Sometimes the
factor of (2π)−1 is associated with the time integral, and sometimes a factor of (2π)−1/2 is assigned to both
frequency and time integrals. The convention I use is obviously the best.
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Figure 4.7: Response of an underdamped oscillator to a pulse force.

In the underdamped regime, for example, we find the solution

x(t) =
f0

ω2
0

{
1− e−βt cos νt− β

ν
e−βt sin νt

}
(4.79)

if 0 ≤ t ≤ T and

x(t) =
f0

ω2
0

{(
e−β(t−T ) cos ν(t− T )− e−βt cos νt

)

+
β

ν

(
e−β(t−T ) sin ν(t− T )− e−βt sin νt

)}
(4.80)

if t > T .

4.4 General Linear Autonomous Inhomogeneous ODEs

This method immediately generalizes to the case of general autonomous linear inhomoge-
neous ODEs of the form

dnx

dtn
+ an−1

dn−1x

dtn−1
+ . . . + a1

dx

dt
+ a0 x = f(t) . (4.81)

We can write this as

Lt x(t) = f(t) , (4.82)
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where Lt is the nth order differential operator

Lt =
dn

dtn
+ an−1

dn−1

dtn−1
+ . . .+ a1

d

dt
+ a0 . (4.83)

The general solution to the inhomogeneous equation is given by

x(t) = xh(t) +

∞∫

−∞

dt′ G(t, t′) f(t′) , (4.84)

where G(t, t′) is the Green’s function. Note that Lt xh(t) = 0. Thus, in order for eqns. 4.82
and 4.84 to be true, we must have

Lt x(t) =

this vanishes︷ ︸︸ ︷
Lt xh(t) +

∞∫

−∞

dt′ LtG(t, t′) f(t′) = f(t) , (4.85)

which means that

LtG(t, t′) = δ(t− t′) , (4.86)

where δ(t− t′) is the Dirac δ-function. Some properties of δ(x):

b∫

a

dx f(x) δ(x − y) =





f(y) if a < y < b

0 if y < a or y > b .

(4.87)

δ
(
g(x)

)
=

∑

x
i
with

g(x
i
)=0

δ(x− xi)∣∣g′(xi)
∣∣ , (4.88)

valid for any functions f(x) and g(x). The sum in the second equation is over the zeros xi
of g(x).

Incidentally, the Dirac δ-function enters into the relation between a function and its Fourier
transform, in the following sense. We have

f(t) =

∞∫

−∞

dω

2π
e−iωt f̂(ω) (4.89)

f̂(ω) =

∞∫

−∞

dt e+iωt f(t) . (4.90)
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Substituting the second equation into the first, we have

f(t) =

∞∫

−∞

dω

2π
e−iωt

∞∫

−∞

dt′ eiωt
′

f(t′)

=

∞∫

−∞

dt′
{ ∞∫

−∞

dω

2π
eiω(t′−t)

}
f(t′) , (4.91)

which is indeed correct because the term in brackets is a representation of δ(t − t′):
∞∫

−∞

dω

2π
eiωs = δ(s) . (4.92)

If the differential equation Lt x(t) = f(t) is defined over some finite t interval with prescribed
boundary conditions on x(t) at the endpoints, thenG(t, t′) will depend on t and t′ separately.
For the case we are considering, the interval is the entire real line t ∈ (−∞,∞), and
G(t, t′) = G(t− t′) is a function of the single variable t− t′.

Note that Lt = L
(
d
dt

)
may be considered a function of the differential operator d

dt . If we

now Fourier transform the equation Lt x(t) = f(t), we obtain

∞∫

−∞

dt eiωt f(t) =

∞∫

−∞

dt eiωt
{
dn

dtn
+ an−1

dn−1

dtn−1
+ . . .+ a1

d

dt
+ a0

}
x(t) (4.93)

=

∞∫

−∞

dt eiωt

{
(−iω)n + an−1 (−iω)n−1 + . . .+ a1 (−iω) + a0

}
x(t) ,

where we integrate by parts on t, assuming the boundary terms at t = ±∞ vanish, i.e.

x(±∞) = 0, so that, inside the t integral,

eiωt
(
d

dt

)k
x(t)→

[(
− d

dt

)k
eiωt

]
x(t) = (−iω)k eiωt x(t) . (4.94)

Thus, if we define

L̂(ω) =

n∑

k=0

ak (−iω)k , (4.95)

then we have
L̂(ω) x̂(ω) = f̂(ω) , (4.96)

where an ≡ 1. According to the Fundamental Theorem of Algebra, the nth degree poly-
nomial L̂(ω) may be uniquely factored over the complex ω plane into a product over n
roots:

L̂(ω) = (−i)n (ω − ω1)(ω − ω2) · · · (ω − ωn) . (4.97)
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If the {ak} are all real, then
[
L̂(ω)

]∗
= L̂(−ω∗), hence if Ω is a root then so is −Ω∗. Thus,

the roots appear in pairs which are symmetric about the imaginary axis. I.e. if Ω = a+ ib
is a root, then so is −Ω∗ = −a+ ib.

The general solution to the homogeneous equation is

xh(t) =
n∑

i=1

Ai e
−iωit , (4.98)

which involves n arbitrary complex constants Ai. The susceptibility, or Green’s function in
Fourier space, Ĝ(ω) is then

Ĝ(ω) =
1

L̂(ω)
=

in

(ω − ω1)(ω − ω2) · · · (ω − ωn)
, (4.99)

and the general solution to the inhomogeneous equation is again given by

x(t) = xh(t) +

∞∫

−∞

dt′ G(t− t′) f(t′) , (4.100)

where xh(t) is the solution to the homogeneous equation, i.e. with zero forcing, and where

G(s) =

∞∫

−∞

dω

2π
e−iωs Ĝ(ω)

= in
∞∫

−∞

dω

2π

e−iωs

(ω − ω1)(ω − ω2) · · · (ω − ωn)

=

n∑

j=1

e−iωjs

iL′(ωj)
Θ(s) , (4.101)

where we assume that Imωj < 0 for all j. The integral above was done using Cauchy’s the-
orem and the calculus of residues – a beautiful result from the theory of complex functions.

As an example, consider the familiar case

L̂(ω) = ω2
0 − 2iβω − ω2

= −(ω − ω+) (ω − ω−) , (4.102)

with ω± = −iβ ± ν, and ν = (ω2
0 − β2)1/2. This yields

L′(ω±) = ∓(ω+ − ω−) = ∓2ν . (4.103)
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Then according to equation 4.101,

G(s) =

{
e−iω+s

iL′(ω+)
+

e−iω−s

iL′(ω−)

}
Θ(s)

=

{
e−βs e−iνs

−2iν
+
e−βs eiνs

2iν

}
Θ(s)

= ν−1 e−βs sin(νs)Θ(s) , (4.104)

exactly as before.

4.5 Kramers-Krönig Relations (advanced material)

Suppose χ̂(ω) ≡ Ĝ(ω) is analytic in the UHP2. Then for all ν, we must have

∞∫

−∞

dν

2π

χ̂(ν)

ν − ω + iǫ
= 0 , (4.105)

where ǫ is a positive infinitesimal. The reason is simple: just close the contour in the UHP,
assuming χ̂(ω) vanishes sufficiently rapidly that Jordan’s lemma can be applied. Clearly
this is an extremely weak restriction on χ̂(ω), given the fact that the denominator already
causes the integrand to vanish as |ω|−1.

Let us examine the function

1

ν − ω + iǫ
=

ν − ω
(ν − ω)2 + ǫ2

− iǫ

(ν − ω)2 + ǫ2
. (4.106)

which we have separated into real and imaginary parts. Under an integral sign, the first
term, in the limit ǫ→ 0, is equivalent to taking a principal part of the integral. That is, for
any function F (ν) which is regular at ν = ω,

lim
ǫ→0

∞∫

−∞

dν

2π

ν − ω
(ν − ω)2 + ǫ2

F (ν) ≡ P
∞∫

−∞

dν

2π

F (ν)

ν − ω . (4.107)

The principal part symbol P means that the singularity at ν = ω is elided, either by
smoothing out the function 1/(ν−ǫ) as above, or by simply cutting out a region of integration
of width ǫ on either side of ν = ω.

The imaginary part is more interesting. Let us write

h(u) ≡ ǫ

u2 + ǫ2
. (4.108)

2In this section, we use the notation χ̂(ω) for the susceptibility, rather than Ĝ(ω)
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For |u| ≫ ǫ, h(u) ≃ ǫ/u2, which vanishes as ǫ→ 0. For u = 0, h(0) = 1/ǫ which diverges as
ǫ → 0. Thus, h(u) has a huge peak at u = 0 and rapidly decays to 0 as one moves off the
peak in either direction a distance greater that ǫ. Finally, note that

∞∫

−∞

duh(u) = π , (4.109)

a result which itself is easy to show using contour integration. Putting it all together, this
tells us that

lim
ǫ→0

ǫ

u2 + ǫ2
= πδ(u) . (4.110)

Thus, for positive infinitesimal ǫ,

1

u± iǫ = P 1

u
∓ iπδ(u) , (4.111)

a most useful result.

We now return to our initial result 4.105, and we separate χ̂(ω) into real and imaginary
parts:

χ̂(ω) = χ̂′(ω) + iχ̂′′(ω) . (4.112)

(In this equation, the primes do not indicate differentiation with respect to argument.) We
therefore have, for every real value of ω,

0 =

∞∫

−∞

dν

2π

[
χ′(ν) + iχ′′(ν)

] [
P 1

ν − ω − iπδ(ν − ω)
]
. (4.113)

Taking the real and imaginary parts of this equation, we derive the Kramers-Krönig rela-

tions:

χ′(ω) = +P
∞∫

−∞

dν

π

χ̂′′(ν)
ν − ω (4.114)

χ′′(ω) = −P
∞∫

−∞

dν

π

χ̂′(ν)
ν − ω . (4.115)



Chapter 5

Calculus of Variations

5.1 Snell’s Law

Warm-up problem: You are standing at point (x1, y1) on the beach and you want to get to

a point (x2, y2) in the water, a few meters offshore. The interface between the beach and
the water lies at x = 0. What path results in the shortest travel time? It is not a straight
line! This is because your speed v1 on the sand is greater than your speed v2 in the water.
The optimal path actually consists of two line segments, as shown in Fig. 5.1. Let the path
pass through the point (0, y) on the interface. Then the time T is a function of y:

T (y) =
1

v1

√
x2

1 + (y − y1)
2 +

1

v2

√
x2

2 + (y2 − y)2 . (5.1)

To find the minimum time, we set

dT

dy
= 0 =

1

v1

y − y1√
x2

1 + (y − y1)
2

− 1

v2

y2 − y√
x2

2 + (y2 − y)2

=
sin θ1
v1
− sin θ2

v2
. (5.2)

Thus, the optimal path satisfies
sin θ1
sin θ2

=
v1
v2

, (5.3)

which is known as Snell’s Law.

Snell’s Law is familiar from optics, where the speed of light in a polarizable medium is
written v = c/n, where n is the index of refraction. In terms of n,

n1 sin θ1 = n2 sin θ2 . (5.4)

If there are several interfaces, Snell’s law holds at each one, so that

ni sin θi = ni+1 sin θi+1 , (5.5)

61
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Figure 5.1: The shortest path between (x1, y1) and (x2, y2) is not a straight line, but rather
two successive line segments of different slope.

at the interface between media i and i+ 1.

In the limit where the number of slabs goes to infinity but their thickness is infinitesimal,
we can regard n and θ as functions of a continuous variable x. One then has

sin θ(x)

v(x)
=

y′

v
√

1 + y′2
= P , (5.6)

where P is a constant. Here wve have used the result sin θ = y′/
√

1 + y′2, which follows
from drawing a right triangle with side lengths dx, dy, and

√
dx2 + dy2. If we differentiate

the above equation with respect to x, we eliminate the constant and obtain the second order
ODE

1

1 + y′2
y′′

y′
=
v′

v
. (5.7)

This is a differential equation that y(x) must satisfy if the functional

T
[
y(x)

]
=

∫
ds

v
=

x2∫

x1

dx

√
1 + y′2

v(x)
(5.8)

is to be minimized.

5.2 Functions and Functionals

A function is a mathematical object which takes a real (or complex) variable, or several
such variables, and returns a real (or complex) number. A functional is a mathematical
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Figure 5.2: The path of shortest length is composed of three line segments. The relation
between the angles at each interface is governed by Snell’s Law.

object which takes an entire function and returns a number. In the case at hand, we have

T
[
y(x)

]
=

x2∫

x1

dxL(y, y′, x) , (5.9)

where the function L(y, y′, x) is given by

L(y, y′, x) =
1

v(x)

√
1 + y′2 . (5.10)

Here n(x) is a given function characterizing the medium, and y(x) is the path whose time
is to be evaluated.

In ordinary calculus, we extremize a function f(x) by demanding that f not change to
lowest order when we change x→ x+ dx:

f(x+ dx) = f(x) + f ′(x) dx+ 1
2 f

′′(x) (dx)2 + . . . . (5.11)

We say that x = x∗ is an extremum when f ′(x∗) = 0.

For a functional, the first functional variation is obtained by sending y(x)→ y(x) + δy(x),
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Figure 5.3: A path y(x) and its variation y(x) + δy(x).

and extracting the variation in the functional to order δy. Thus, we compute

T
[
y(x) + δy(x)

]
=

x2∫

x1

dxL(y + δy, y′ + δy′, x)

=

x2∫

x1

dx

{
L+

∂L

∂y
δy +

∂L

∂y′
δy′ +O

(
(δy)2

)}

= T
[
y(x)

]
+

x2∫

x1

dx

{
∂L

∂y
δy +

∂L

∂y′
d

dx
δy

}

= T
[
y(x)

]
+

x2∫

x1

dx

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
δy +

∂L

∂y′
δy

∣∣∣∣∣

x2

x1

. (5.12)

Now one very important thing about the variation δy(x) is that it must vanish at the

endpoints: δy(x1) = δy(x2) = 0. This is because the space of functions under consideration

satisfy fixed boundary conditions y(x1) = y1 and y(x2) = y2. Thus, the last term in the
above equation vanishes, and we have

δT =

x2∫

x1

dx

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
δy . (5.13)

We say that the first functional derivative of T with respect to y(x) is

δT

δy(x)
=

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]

x

, (5.14)

where the subscript indicates that the expression inside the square brackets is to be evaluated
at x. The functional T

[
y(x)

]
is extremized when its first functional derivative vanishes,
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which results in a differential equation for y(x),

∂L

∂y
− d

dx

(
∂L

∂y′

)
= 0 , (5.15)

known as the Euler-Lagrange equation.

L(y, y′, x) independent of y

Suppose L(y, y′, x) is independent of y. Then from the Euler-Lagrange equations we have
that

P ≡ ∂L

∂y′
(5.16)

is a constant. In classical mechanics, this will turn out to be a generalized momentum. For
L = 1

v

√
1 + y′2, we have

P =
y′

v
√

1 + y′2
. (5.17)

Setting dP/dx = 0, we recover the second order ODE of eqn. 5.7. Solving for y′,

dy

dx
= ± v(x)√

v2
0 − v2(x)

, (5.18)

where v0 = 1/P .

L(y, y′, x) independent of x

When L(y, y′, x) is independent of x, we can again integrate the equation of motion. Con-
sider the quantity

H = y′
∂L

∂y′
− L . (5.19)

Then

dH

dx
=

d

dx

[
y′
∂L

∂y′
− L

]
= y′′

∂L

∂y′
+ y′

d

dx

(
∂L

∂y′

)
− ∂L

∂y′
y′′ − ∂L

∂y
y′ − ∂L

∂x

= y′
[
d

dx

(
∂L

∂y′

)
− ∂L

∂y

]
− ∂L

∂x
,

(5.20)

where we have used the Euler-Lagrange equations to write d
dx

(
∂L
∂y′

)
= ∂L

∂y . So if ∂L/∂x = 0,
we have dH/dx = 0, i.e. H is a constant.
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5.2.1 Functional Taylor series

In general, we may expand a functional F [y + δy] in a functional Taylor series,

F [y + δy] = F [y] +

∫
dx1K1(x1) δy(x1) + 1

2 !

∫
dx1

∫
dx2K2(x1, x2) δy(x1) δy(x2)

+ 1
3 !

∫
dx1

∫
dx2

∫
dx3K3(x1, x2, x3) δy(x1) δy(x2) δy(x3) + . . . (5.21)

and we write

Kn(x1, . . . , xn) ≡
δnF

δy(x1) · · · δy(xn)
(5.22)

for the nth functional derivative.

5.3 Examples from the Calculus of Variations

Here we present three useful examples of variational calculus as applied to problems in
mathematics and physics.

5.3.1 Example 1 : minimal surface of revolution

Consider a surface formed by rotating the function y(x) about the x-axis. The area is then

A
[
y(x)

]
=

x2∫

x1

dx 2πy

√

1 +

(
dy

dx

)2
, (5.23)

and is a functional of the curve y(x). Thus we can define L(y, y′) = 2πy
√

1 + y′2 and make
the identification y(x)↔ q(t). Since L(y, y′, x) is independent of x, we have

H = y′
∂L

∂y′
− L ⇒ dH

dx
= −∂L

∂x
, (5.24)

and when L has no explicit x-dependence, H is conserved. One finds

H = 2πy · y′2√
1 + y′2

− 2πy

√
1 + y′2 = − 2πy√

1 + y′2
. (5.25)

Solving for y′,

dy

dx
= ±

√(
2πy

H

)2

− 1 , (5.26)

which may be integrated with the substitution y = H
2π coshu, yielding

y(x) = b cosh

(
x− a
b

)
, (5.27)
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Figure 5.4: Minimal surface solution, with y(x) = b cosh(x/b) and y(x0) = y0. Top panel:
A/2πy2

0 vs. y0/x0. Bottom panel: sech(x0/b) vs. y0/x0. The blue curve corresponds to a
global minimum of A[y(x)], and the red curve to a local minimum or saddle point.

where a and b = H
2π are constants of integration. Note there are two such constants, as

the original equation was second order. This shape is called a catenary. As we shall later
find, it is also the shape of a uniformly dense rope hanging between two supports, under
the influence of gravity. To fix the constants a and b, we invoke the boundary conditions
y(x1) = y1 and y(x2) = y2.

Consider the case where −x1 = x2 ≡ x0 and y1 = y2 ≡ y0. Then clearly a = 0, and we have

y0 = b cosh
(x0

b

)
⇒ γ = κ−1 coshκ , (5.28)

with γ ≡ y0/x0 and κ ≡ x0/b. One finds that for any γ > 1.5089 there are two solutions,
one of which is a global minimum and one of which is a local minimum or saddle of A[y(x)].
The solution with the smaller value of κ (i.e. the larger value of sech κ) yields the smaller
value of A, as shown in Fig. 5.4. Note that

y

y0
=

cosh(x/b)

cosh(x0/b)
, (5.29)

so y(x = 0) = y0 sech(x0/b).

When extremizing functions that are defined over a finite or semi-infinite interval, one
must take care to evaluate the function at the boundary, for it may be that the boundary
yields a global extremum even though the derivative may not vanish there. Similarly, when
extremizing functionals, one must investigate the functions at the boundary of function
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space. In this case, such a function would be the discontinuous solution, with

y(x) =





y1 if x = x1

0 if x1 < x < x2

y2 if x = x2 .

(5.30)

This solution corresponds to a surface consisting of two discs of radii y1 and y2, joined
by an infinitesimally thin thread. The area functional evaluated for this particular y(x)

is clearly A = π(y2
1 + y2

2). In Fig. 5.4, we plot A/2πy2
0 versus the parameter γ = y0/x0.

For γ > γc ≈ 1.564, one of the catenary solutions is the global minimum. For γ < γc, the
minimum area is achieved by the discontinuous solution.

Note that the functional derivative,

K1(x) =
δA

δy(x)
=

{
∂L

∂y
− d

dx

(
∂L

∂y′

)}
=

2π
(
1 + y′2 − yy′′

)

(1 + y′2)3/2
, (5.31)

indeed vanishes for the catenary solutions, but does not vanish for the discontinuous solu-
tion, where K1(x) = 2π throughout the interval (−x0, x0). Since y = 0 on this interval, y

cannot be decreased. The fact that K1(x) > 0 means that increasing y will result in an
increase in A, so the boundary value for A, which is 2πy2

0 , is indeed a local minimum.

We furthermore see in Fig. 5.4 that for γ < γ∗ ≈ 1.5089 the local minimum and saddle
are no longer present. This is the familiar saddle-node bifurcation, here in function space.
Thus, for γ ∈ [0, γ∗) there are no extrema of A[y(x)], and the minimum area occurs for the
discontinuous y(x) lying at the boundary of function space. For γ ∈ (γ∗, γc), two extrema
exist, one of which is a local minimum and the other a saddle point. Still, the area is
minimized for the discontinuous solution. For γ ∈ (γc,∞), the local minimum is the global
minimum, and has smaller area than for the discontinuous solution.

5.3.2 Example 2 : geodesic on a surface of revolution

We use cylindrical coordinates (ρ, φ, z) on the surface z = z(ρ). Thus,

ds2 = dρ2 + ρ2 dφ2 + dx2

=
{
1 +

[
z′(ρ)

]2}
dρ+ ρ2 dφ2 , (5.32)

and the distance functional D
[
φ(ρ)

]
is

D
[
φ(ρ)

]
=

ρ2∫

ρ1

dρL(φ, φ′, ρ) , (5.33)
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where

L(φ, φ′, ρ) =

√
1 + z′2(ρ) + ρ2 φ′2(ρ) . (5.34)

The Euler-Lagrange equation is

∂L

∂φ
− d

dρ

(
∂L

∂φ′

)
= 0 ⇒ ∂L

∂φ′
= const. (5.35)

Thus,
∂L

∂φ′
=

ρ2 φ′√
1 + z′2 + ρ2 φ′2

= a , (5.36)

where a is a constant. Solving for φ′, we obtain

dφ =
a
√

1 +
[
z′(ρ)

]2

ρ
√
ρ2 − a2

dρ , (5.37)

which we must integrate to find φ(ρ), subject to boundary conditions φ(ρi) = φi, with
i = 1, 2.

On a cone, z(ρ) = λρ, and we have

dφ = a
√

1 + λ2
dρ

ρ
√
ρ2 − a2

=
√

1 + λ2 d tan−1

√
ρ2

a2
− 1 , (5.38)

which yields

φ(ρ) = β +
√

1 + λ2 tan−1

√
ρ2

a2
− 1 , (5.39)

which is equivalent to

ρ cos

(
φ− β√
1 + λ2

)
= a . (5.40)

The constants β and a are determined from φ(ρi) = φi.

5.3.3 Example 3 : brachistochrone

Problem: find the path between (x1, y1) and (x2, y2) which a particle sliding frictionlessly
and under constant gravitational acceleration will traverse in the shortest time. To solve
this we first must invoke some elementary mechanics. Assuming the particle is released
from (x1, y1) at rest, energy conservation says

1
2mv

2 +mgy = mgy1 . (5.41)

Then the time, which is a functional of the curve y(x), is

T
[
y(x)

]
=

x2∫

x1

ds

v
=

1√
2g

x2∫

x1

dx

√
1 + y′2

y1 − y
(5.42)

≡
x2∫

x1

dxL(y, y′, x) ,
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with

L(y, y′, x) =

√
1 + y′2

2g(y1 − y)
. (5.43)

Since L is independent of x, eqn. 5.20, we have that

H = y′
∂L

∂y′
− L = −

[
2g (y1 − y)

(
1 + y′2

)]−1/2
(5.44)

is conserved. This yields

dx = −
√

y1 − y
2a− y1 + y

dy , (5.45)

with a = (4gH2)−1. This may be integrated parametrically, writing

y1 − y = 2a sin2(1
2θ) ⇒ dx = 2a sin2(1

2θ) dθ , (5.46)

which results in the parametric equations

x− x1 = a
(
θ − sin θ

)
(5.47)

y − y1 = −a (1− cos θ) . (5.48)

This curve is known as a cycloid.

5.3.4 Ocean waves

Surface waves in fluids propagate with a definite relation between their angular frequency
ω and their wavevector k = 2π/λ, where λ is the wavelength. The dispersion relation is a
function ω = ω(k). The group velocity of the waves is then v(k) = dω/dk.

In a fluid with a flat bottom at depth h, the dispersion relation turns out to be

ω(k) =
√
gk tanh kh ≈





√
gh k shallow (kh≪ 1)

√
gk deep (kh≫ 1) .

(5.49)

Suppose we are in the shallow case, where the wavelength λ is significantly greater than
the depth h of the fluid. This is the case for ocean waves which break at the shore. The
phase velocity and group velocity are then identical, and equal to v(h) =

√
gh. The waves

propagate more slowly as they approach the shore.

Let us choose the following coordinate system: x represents the distance parallel to the
shoreline, y the distance perpendicular to the shore (which lies at y = 0), and h(y) is the
depth profile of the bottom. We assume h(y) to be a slowly varying function of y which

satisfies h(0) = 0. Suppose a disturbance in the ocean at position (x2, y2) propagates until

it reaches the shore at (x1, y1 = 0). The time of propagation is

T
[
y(x)

]
=

∫
ds

v
=

x2∫

x1

dx

√
1 + y′2

g h(y)
. (5.50)
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Figure 5.5: For shallow water waves, v =
√
gh. To minimize the propagation time from a

source to the shore, the waves break parallel to the shoreline.

We thus identify the integrand

L(y, y′, x) =

√
1 + y′2

g h(y)
. (5.51)

As with the brachistochrone problem, to which this bears an obvious resemblance, L is
cyclic in the independent variable x, hence

H = y′
∂L

∂y′
− L = −

[
g h(y)

(
1 + y′2

)]−1/2
(5.52)

is constant. Solving for y′(x), we have

tan θ =
dy

dx
=

√
a

h(y)
− 1 , (5.53)

where a = (gH)−1 is a constant, and where θ is the local slope of the function y(x). Thus,
we conclude that near y = 0, where h(y) → 0, the waves come in parallel to the shoreline.

If h(y) = αy has a linear profile, the solution is again a cycloid, with

x(θ) = b (θ − sin θ) (5.54)

y(θ) = b (1− cos θ) , (5.55)

where b = 2a/α and where the shore lies at θ = 0. Expanding in a Taylor series in θ for
small θ, we may eliminate θ and obtain y(x) as

y(x) =
(

9
2

)1/3
b1/3 x2/3 + . . . . (5.56)
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A tsunami is a shallow water wave that manages propagates in deep water. This requires
λ > h, as we’ve seen, which means the disturbance must have a very long spatial extent out
in the open ocean, where h ∼ 10 km. An undersea earthquake is the only possible source;
the characteristic length of earthquake fault lines can be hundreds of kilometers. If we take
h = 10km, we obtain v =

√
gh ≈ 310m/s or 1100 km/hr. At these speeds, a tsunami can

cross the Pacific Ocean in less than a day.

As the wave approaches the shore, it must slow down, since v =
√
gh is diminishing. But

energy is conserved, which means that the amplitude must concomitantly rise. In extreme
cases, the water level rise at shore may be 20 meters or more.

5.4 Appendix : More on Functionals

We remarked in section 5.2 that a function f is an animal which gets fed a real number x
and excretes a real number f(x). We say f maps the reals to the reals, or

f : R→ R (5.57)

Of course we also have functions g : C → C which eat and excrete complex numbers,
multivariable functions h : RN → R which eat N -tuples of numbers and excrete a single
number, etc.

A functional F [f(x)] eats entire functions (!) and excretes numbers. That is,

F :
{
f(x)

∣∣ x ∈ R
}
→ R (5.58)

This says that F operates on the set of real-valued functions of a single real variable, yielding
a real number. Some examples:

F [f(x)] = 1
2

∞∫

−∞

dx
[
f(x)

]2
(5.59)

F [f(x)] = 1
2

∞∫

−∞

dx

∞∫

−∞

dx′K(x, x′) f(x) f(x′) (5.60)

F [f(x)] =

∞∫

−∞

dx

{
1
2Af

2(x) + 1
2B

(
df

dx

)2}
. (5.61)

In classical mechanics, the action S is a functional of the path q(t):

S[q(t)] =

tb∫

ta

dt
{

1
2mq̇

2 − U(q)
}
. (5.62)
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Figure 5.6: A functional S[q(t)] is the continuum limit of a function of a large number of
variables, S(q1, . . . , qM ).

We can also have functionals which feed on functions of more than one independent variable,
such as

S[y(x, t)] =

tb∫

ta

dt

xb∫

xa

dx

{
1
2µ

(
∂y

∂t

)2

− 1
2τ

(
∂y

∂x

)2
}
, (5.63)

which happens to be the functional for a string of mass density µ under uniform tension τ .
Another example comes from electrodynamics:

S[Aµ(x, t)] = −
∫
d3x

∫
dt

{
1

16π
Fµν F

µν +
1

c
jµA

µ

}
, (5.64)

which is a functional of the four fields {A0, A1, A2, A3}, where A0 = cφ. These are the
components of the 4-potential, each of which is itself a function of four independent variables
(x0, x1, x2, x3), with x0 = ct. The field strength tensor is written in terms of derivatives of
the Aµ: Fµν = ∂µAν − ∂νAµ, where we use a metric gµν = diag(+,−,−,−) to raise and
lower indices. The 4-potential couples linearly to the source term Jµ, which is the electric
4-current (cρ,J).

We extremize functions by sending the independent variable x to x + dx and demanding
that the variation df = 0 to first order in dx. That is,

f(x+ dx) = f(x) + f ′(x) dx+ 1
2f

′′(x)(dx)2 + . . . , (5.65)

whence df = f ′(x) dx +O
(
(dx)2

)
and thus

f ′(x∗) = 0 ⇐⇒ x∗ an extremum. (5.66)

We extremize functionals by sending

f(x)→ f(x) + δf(x) (5.67)
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and demanding that the variation δF in the functional F [f(x)] vanish to first order in δf(x).
The variation δf(x) must sometimes satisfy certain boundary conditions. For example, if

F [f(x)] only operates on functions which vanish at a pair of endpoints, i.e. f(xa) = f(xb) =
0, then when we extremize the functional F we must do so within the space of allowed

functions. Thus, we would in this case require δf(xa) = δf(xb) = 0. We may expand the
functional F [f + δf ] in a functional Taylor series,

F [f + δf ] = F [f ] +

∫
dx1K1(x1) δf(x1) + 1

2 !

∫
dx1

∫
dx2K2(x1, x2) δf(x1) δf(x2)

+ 1
3 !

∫
dx1

∫
dx2

∫
dx3K3(x1, x2, x3) δf(x1) δf(x2) δf(x3) + . . . (5.68)

and we write

Kn(x1, . . . , xn) ≡
δnF

δf(x1) · · · δf(xn)
. (5.69)

In a more general case, F = F [{fi(x)} is a functional of several functions, each of which is
a function of several independent variables.1 We then write

F [{fi + δfi}] = F [{fi}] +

∫
dx1K

i
1(x1) δfi(x1)

+ 1
2 !

∫
dx1

∫
dx2K

ij
2 (x1,x2) δfi(x1) δfj(x2)

+ 1
3 !

∫
dx1

∫
dx2

∫
dx3 K

ijk
3 (x1,x2, x3) δfi(x1) δfj(x2) δfk(x3) + . . . ,

(5.70)

with

K
i1i2···in
n (x1,x2, . . . ,xn) =

δnF

δf
i1

(x1) δfi2
(x2) δfin

(xn)
. (5.71)

Another way to compute functional derivatives is to send

f(x)→ f(x) + ǫ1 δ(x− x1) + . . .+ ǫn δ(x− xn) (5.72)

and then differentiate n times with respect to ǫ1 through ǫn. That is,

δnF

δf(x1) · · · δf(xn)
=

∂n

∂ǫ1 · · · ∂ǫn

∣∣∣∣∣
ǫ1=ǫ2=···ǫn=0

F
[
f(x) + ǫ1 δ(x− x1) + . . .+ ǫn δ(x − xn)

]
. (5.73)

Let’s see how this works. As an example, we’ll take the action functional from classical
mechanics,

S[q(t)] =

tb∫

ta

dt
{

1
2mq̇

2 − U(q)
}
. (5.74)

1It may be also be that different functions depend on a different number of independent variables. E.g.

F = F [f(x), g(x, y), h(x, y, z)].
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To compute the first functional derivative, we replace the function q(t) with q(t)+ǫ δ(t−t1),
and expand in powers of ǫ:

S
[
q(t) + ǫδ(t− t1)

]
= S[q(t)] + ǫ

tb∫

ta

dt
{
m q̇ δ′(t− t1)− U ′(q) δ(t− t1)

}

= −ǫ
{
m q̈(t1) + U ′(q(t1)

)}
, (5.75)

hence
δS

δq(t)
= −

{
m q̈(t) + U ′(q(t)

)}
(5.76)

and setting the first functional derivative to zero yields Newton’s Second Law, mq̈ = −U ′(q),
for all t ∈ [ta, tb]. Note that we have used the result

∞∫

−∞

dt δ′(t− t1)h(t) = −h′(t1) , (5.77)

which is easily established upon integration by parts.

To compute the second functional derivative, we replace

q(t)→ q(t) + ǫ1 δ(t − t1) + ǫ2 δ(t− t2) (5.78)

and extract the term of order ǫ1 ǫ2 in the double Taylor expansion. One finds this term to
be

ǫ1 ǫ2

tb∫

ta

dt
{
mδ′(t− t1) δ′(t− t2)− U ′′(q) δ(t− t1) δ(t− t2)

}
. (5.79)

Note that we needn’t bother with terms proportional to ǫ21 or ǫ22 since the recipe is to

differentiate once with respect to each of ǫ1 and ǫ2 and then to set ǫ1 = ǫ2 = 0. This

procedure uniquely selects the term proportional to ǫ1 ǫ2, and yields

δ2S

δq(t1) δq(t2)
= −

{
mδ′′(t1 − t2) + U ′′(q(t1)

)
δ(t1 − t2)

}
. (5.80)

In multivariable calculus, the stability of an extremum is assessed by computing the matrix
of second derivatives at the extremal point, known as the Hessian matrix. One has

∂f

∂xi

∣∣∣∣
x∗

= 0 ∀ i ; Hij =
∂2f

∂xi ∂xj

∣∣∣∣
x∗

. (5.81)

The eigenvalues of the Hessian Hij determine the stability of the extremum. Since Hij is
a symmetric matrix, its eigenvectors ηα may be chosen to be orthogonal. The associated
eigenvalues λα, defined by the equation

Hij η
α
j = λα η

α
i , (5.82)
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are the respective curvatures in the directions ηα, where α ∈ {1, . . . , n} where n is the
number of variables. The extremum is a local minimum if all the eigenvalues λα are positive,
a maximum if all are negative, and otherwise is a saddle point. Near a saddle point, there
are some directions in which the function increases and some in which it decreases.

In the case of functionals, the second functional derivative K2(x1, x2) defines an eigenvalue
problem for δf(x):

xb∫

xa

dx2K2(x1, x2) δf(x2) = λ δf(x1) . (5.83)

In general there are an infinite number of solutions to this equation which form a basis in
function space, subject to appropriate boundary conditions at xa and xb. For example, in
the case of the action functional from classical mechanics, the above eigenvalue equation
becomes a differential equation,

−
{
m

d2

dt2
+ U ′′(q∗(t)

)}
δq(t) = λ δq(t) , (5.84)

where q∗(t) is the solution to the Euler-Lagrange equations. As with the case of ordinary
multivariable functions, the functional extremum is a local minimum (in function space)
if every eigenvalue λα is positive, a local maximum if every eigenvalue is negative, and a
saddle point otherwise.

Consider the simple harmonic oscillator, for which U(q) = 1
2 mω

2
0 q

2. Then U ′′(q∗(t)
)

=
mω2

0; note that we don’t even need to know the solution q∗(t) to obtain the second functional
derivative in this special case. The eigenvectors obey m(δq̈ + ω2

0 δq) = −λ δq, hence

δq(t) = A cos
(√

ω2
0 + (λ/m) t+ ϕ

)
, (5.85)

where A and ϕ are constants. Demanding δq(ta) = δq(tb) = 0 requires

√
ω2

0 + (λ/m)
(
tb − ta) = nπ , (5.86)

where n is an integer. Thus, the eigenfunctions are

δqn(t) = A sin

(
nπ · t− ta

tb − ta

)
, (5.87)

and the eigenvalues are

λn = m
(nπ
T

)2
−mω2

0 , (5.88)

where T = tb − ta. Thus, so long as T > π/ω0, there is at least one negative eigenvalue.

Indeed, for nπ
ω0

< T < (n+1)π
ω0

there will be n negative eigenvalues. This means the action
is generally not a minimum, but rather lies at a saddle point in the (infinite-dimensional)
function space.
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To test this explicitly, consider a harmonic oscillator with the boundary conditions q(0) = 0
and q(T ) = Q. The equations of motion, q̈+ω2

0 q = 0, along with the boundary conditions,
determine the motion,

q∗(t) =
Q sin(ω0t)

sin(ω0T )
. (5.89)

The action for this path is then

S[q∗(t)] =

T∫

0

dt
{

1
2m q̇∗2 − 1

2mω
2
0 q

∗2
}

=
mω2

0 Q
2

2 sin2ω0T

T∫

0

dt
{

cos2ω0t− sin2ω0t
}

= 1
2mω0Q

2 ctn (ω0T ) . (5.90)

Next consider the path q(t) = Qt/T which satisfies the boundary conditions but does not
satisfy the equations of motion (it proceeds with constant velocity). One finds the action
for this path is

S[q(t)] = 1
2mω0Q

2

(
1

ω0T
− 1

3ω0T

)
. (5.91)

Thus, provided ω0T 6= nπ, in the limit T →∞ we find that the constant velocity path has
lower action.

Finally, consider the general mechanical action,

S
[
q(t)

]
=

tb∫

ta

dtL(q, q̇, t) . (5.92)

We now evaluate the first few terms in the functional Taylor series:

S
[
q∗(t) + δq(t)

]
=

tb∫

ta

dt

{
L(q∗, q̇∗, t) +

∂L

∂qi

∣∣∣∣∣
q∗

δqi +
∂L

∂q̇i

∣∣∣∣∣
q∗

δq̇i (5.93)

+
1

2

∂2L

∂qi ∂qj

∣∣∣∣∣
q∗

δqi δqj +
∂2L

∂qi ∂q̇j

∣∣∣∣∣
q∗

δqi δq̇j +
1

2

∂2L

∂q̇i ∂q̇j

∣∣∣∣∣
q∗

δq̇i δq̇j + . . .

}
.

To identify the functional derivatives, we integrate by parts. Let Φ...(t) be an arbitrary
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function of time. Then

tb∫

ta

dtΦi(t) δq̇i(t) = −
tb∫

ta

dt Φ̇i(t) δqi(t) (5.94)

tb∫

ta

dtΦij(t) δqi(t) δq̇j(t) =

tb∫

ta

dt

tb∫

ta

dt′ Φij(t) δ(t − t′)
d

dt′
δqi(t) δqj(t

′)

=

tb∫

ta

dt

tb∫

ta

dt′ Φij(t)) δ
′(t− t′) δqi(t) δqj(t′) (5.95)

tb∫

ta

dtΦij(t) dq̇i(t) δq̇j(t) =

tb∫

ta

dt

tb∫

ta

dt′ Φij(t) δ(t − t′)
d

dt

d

dt′
δqi(t) δqj(t

′)

= −
tb∫

ta

dt

tb∫

ta

dt′
[
Φ̇ij(t) δ

′(t− t′) + Φij(t) δ
′′(t− t′)

]
δqi(t) δqj(t

′) .

(5.96)

Thus,

δS

δqi(t)
=

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]

q∗(t)

(5.97)

δ2S

δqi(t) δqj(t′)
=

{
∂2L

∂qi ∂qj

∣∣∣∣∣
q∗(t)

δ(t − t′)− ∂2L

∂q̇i ∂q̇j

∣∣∣∣∣
q∗(t)

δ′′(t− t′)

+

[
2

∂2L

∂qi ∂q̇j
− d

dt

(
∂2L

∂q̇i ∂q̇j

)]

q∗(t)

δ′(t− t′)
}
. (5.98)



Chapter 6

Lagrangian Mechanics

6.1 Generalized Coordinates

A set of generalized coordinates q1, . . . , qn completely describes the positions of all particles
in a mechanical system. In a system with df degrees of freedom and k constraints, n = df−k
independent generalized coordinates are needed to completely specify all the positions. A
constraint is a relation among coordinates, such as x2 + y2 + z2 = a2 for a particle moving
on a sphere of radius a. In this case, df = 3 and k = 1. In this case, we could eliminate z

in favor of x and y, i.e. by writing z = ±
√
a2 − x2 − y2, or we could choose as coordinates

the polar and azimuthal angles θ and φ.

For the moment we will assume that n = df − k, and that the generalized coordinates are
independent, satisfying no additional constraints among them. Later on we will learn how
to deal with any remaining constraints among the {q1, . . . , qn}.

The generalized coordinates may have units of length, or angle, or perhaps something totally
different. In the theory of small oscillations, the normal coordinates are conventionally
chosen to have units of (mass)1/2×(length). However, once a choice of generalized coordinate
is made, with a concomitant set of units, the units of the conjugate momentum and force
are determined:

[
pσ
]

=
ML2

T
· 1[
qσ
] ,

[
Fσ
]

=
ML2

T 2
· 1[
qσ
] , (6.1)

where
[
A
]

means ‘the units of A’, and where M , L, and T stand for mass, length, and time,
respectively. Thus, if qσ has dimensions of length, then pσ has dimensions of momentum
and Fσ has dimensions of force. If qσ is dimensionless, as is the case for an angle, pσ has
dimensions of angular momentum (ML2/T ) and Fσ has dimensions of torque (ML2/T 2).

79
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6.2 Hamilton’s Principle

The equations of motion of classical mechanics are embodied in a variational principle,
called Hamilton’s principle. Hamilton’s principle states that the motion of a system is such
that the action functional

S
[
q(t)

]
=

t2∫

t1

dtL(q, q̇, t) (6.2)

is an extremum, i.e. δS = 0. Here, q = {q1, . . . , qn} is a complete set of generalized

coordinates for our mechanical system, and

L = T − U (6.3)

is the Lagrangian, where T is the kinetic energy and U is the potential energy. Setting the
first variation of the action to zero gives the Euler-Lagrange equations,

d

dt

momentum pσ︷ ︸︸ ︷(
∂L

∂q̇σ

)
=

force Fσ︷︸︸︷
∂L

∂qσ
. (6.4)

Thus, we have the familiar ṗσ = Fσ , also known as Newton’s second law. Note, however,
that the {qσ} are generalized coordinates, so pσ may not have dimensions of momentum,
nor Fσ of force. For example, if the generalized coordinate in question is an angle φ, then
the corresponding generalized momentum is the angular momentum about the axis of φ’s
rotation, and the generalized force is the torque.

6.2.1 Invariance of the equations of motion

Suppose

L̃(q, q̇, t) = L(q, q̇, t) +
d

dt
G(q, t) . (6.5)

Then
S̃[q(t)] = S[q(t)] +G(qb, tb)−G(qa, ta) . (6.6)

Since the difference S̃−S is a function only of the endpoint values {qa, qb}, their variations

are identical: δS̃ = δS. This means that L and L̃ result in the same equations of motion.
Thus, the equations of motion are invariant under a shift of L by a total time derivative of
a function of coordinates and time.

6.2.2 Remarks on the order of the equations of motion

The equations of motion are second order in time. This follows from the fact that L =
L(q, q̇, t). Using the chain rule,

d

dt

(
∂L

∂q̇σ

)
=

∂2L

∂q̇σ ∂q̇σ′
q̈σ′ +

∂2L

∂q̇σ ∂qσ′
q̇σ′ +

∂2L

∂q̇σ ∂t
. (6.7)
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That the equations are second order in time can be regarded as an empirical fact. It follows,
as we have just seen, from the fact that L depends on q and on q̇, but on no higher time
derivative terms. Suppose the Lagrangian did depend on the generalized accelerations q̈ as
well. What would the equations of motion look like?

Taking the variation of S,

δ

tb∫

ta

dtL(q, q̇, q̈, t) =

[
∂L

∂q̇σ
δqσ +

∂L

∂q̈σ
δq̇σ −

d

dt

(
∂L

∂q̈σ

)
δqσ

]tb

ta

+

tb∫

ta

dt

{
∂L

∂qσ
− d

dt

(
∂L

∂q̇σ

)
+
d2

dt2

(
∂L

∂q̈σ

)}
δqσ . (6.8)

The boundary term vanishes if we require δqσ(ta) = δqσ(tb) = δq̇σ(ta) = δq̇σ(tb) = 0 ∀ σ.
The equations of motion would then be fourth order in time.

6.2.3 Lagrangian for a free particle

For a free particle, we can use Cartesian coordinates for each particle as our system of
generalized coordinates. For a single particle, the Lagrangian L(x,v, t) must be a function
solely of v2. This is because homogeneity with respect to space and time preclude any
dependence of L on x or on t, and isotropy of space means L must depend on v2. We
next invoke Galilean relativity, which says that the equations of motion are invariant under
transformation to a reference frame moving with constant velocity. Let V be the velocity
of the new reference frame K′ relative to our initial reference frame K. Then x′ = x− V t,
and v′ = v − V . In order that the equations of motion be invariant under the change in
reference frame, we demand

L′(v′) = L(v) +
d

dt
G(x, t) . (6.9)

The only possibility is L = 1
2mv

2, where the constant m is the mass of the particle. Note:

L′ = 1
2m(v − V )2 = 1

2mv
2 +

d

dt

(
1
2mV

2 t−mV · x
)

= L+
dG

dt
. (6.10)

For N interacting particles,

L = 1
2

N∑

a=1

ma

(dxa
dt

)2
− U

(
{xa}, {ẋa}

)
. (6.11)

Here, U is the potential energy . Generally, U is of the form

U =
∑

a

U1(xa) +
∑

a<a′

v(xa − xa′) , (6.12)
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however, as we shall see, velocity-dependent potentials appear in the case of charged parti-
cles interacting with electromagnetic fields. In general, though,

L = T − U , (6.13)

where T is the kinetic energy, and U is the potential energy.

6.3 Conserved Quantities

A conserved quantity Λ(q, q̇, t) is one which does not vary throughout the motion of the
system. This means

dΛ

dt

∣∣∣∣∣
q=q(t)

= 0 . (6.14)

We shall discuss conserved quantities in detail in the chapter on Noether’s Theorem, which
follows.

6.3.1 Momentum conservation

The simplest case of a conserved quantity occurs when the Lagrangian does not explicitly
depend on one or more of the generalized coordinates, i.e. when

Fσ =
∂L

∂qσ
= 0 . (6.15)

We then say that L is cyclic in the coordinate qσ. In this case, the Euler-Lagrange equations
ṗσ = Fσ say that the conjugate momentum pσ is conserved. Consider, for example, the
motion of a particle of mass m near the surface of the earth. Let (x, y) be coordinates
parallel to the surface and z the height. We then have

T = 1
2m
(
ẋ2 + ẏ2 + ż2

)
(6.16)

U = mgz (6.17)

L = T − U = 1
2m
(
ẋ2 + ẏ2 + ż2

)
−mgz . (6.18)

Since

Fx =
∂L

∂x
= 0 and Fy =

∂L

∂y
= 0 , (6.19)

we have that px and py are conserved, with

px =
∂L

∂ẋ
= mẋ , py =

∂L

∂ẏ
= mẏ . (6.20)

These first order equations can be integrated to yield

x(t) = x(0) +
px
m
t , y(t) = y(0) +

py
m
t . (6.21)
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The z equation is of course
ṗz = mz̈ = −mg = Fz , (6.22)

with solution
z(t) = z(0) + ż(0) t− 1

2gt
2 . (6.23)

As another example, consider a particle moving in the (x, y) plane under the influence of
a potential U(x, y) = U

(√
x2 + y2

)
which depends only on the particle’s distance from

the origin ρ =
√
x2 + y2. The Lagrangian, expressed in two-dimensional polar coordinates

(ρ, φ), is
L = 1

2m
(
ρ̇2 + ρ2φ̇2

)
− U(ρ) . (6.24)

We see that L is cyclic in the angle φ, hence

pφ =
∂L

∂φ̇
= mρ2φ̇ (6.25)

is conserved. pφ is the angular momentum of the particle about the ẑ axis. In the language
of the calculus of variations, momentum conservation is what follows when the integrand of
a functional is independent of the independent variable.

6.3.2 Energy conservation

When the integrand of a functional is independent of the dependent variable, another con-
servation law follows. For Lagrangian mechanics, consider the expression

H(q, q̇, t) =

n∑

σ=1

pσ q̇σ − L . (6.26)

Now we take the total time derivative of H:

dH

dt
=

n∑

σ=1

{
pσ q̈σ + ṗσ q̇σ −

∂L

∂qσ
q̇σ −

∂L

∂q̇σ
q̈σ

}
− ∂L

∂t
. (6.27)

We evaluate Ḣ along the motion of the system, which entails that the terms in the curly
brackets above cancel for each σ:

pσ =
∂L

∂q̇σ
, ṗσ =

∂L

∂qσ
. (6.28)

Thus, we find
dH

dt
= −∂L

∂t
, (6.29)

which means that H is conserved whenever the Lagrangian contains no explicit time depen-

dence. For a Lagrangian of the form

L =
∑

a

1
2 maṙ

2
a − U(r1, . . . , rN ) , (6.30)
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we have that pa = ma ṙa, and

H = T + U =
∑

a

1
2 maṙ

2
a + U(r1, . . . , rN ) . (6.31)

However, it is not always the case that H = T + U is the total energy, as we shall see in
the next chapter.

6.4 Choosing Generalized Coordinates

Any choice of generalized coordinates will yield an equivalent set of equations of motion.
However, some choices result in an apparently simpler set than others. This is often true
with respect to the form of the potential energy. Additionally, certain constraints that may
be present are more amenable to treatment using a particular set of generalized coordinates.

The kinetic energy T is always simple to write in Cartesian coordinates, and it is good
practice, at least when one is first learning the method, to write T in Cartesian coordinates
and then convert to generalized coordinates. In Cartesian coordinates, the kinetic energy
of a single particle of mass m is

T = 1
2m
(
ẋ2 + ẏ2 + ẋ2

)
. (6.32)

If the motion is two-dimensional, and confined to the plane z = const., one of course has
T = 1

2m
(
ẋ2 + ẏ2

)
.

Two other commonly used coordinate systems are the cylindrical and spherical systems. In
cylindrical coordinates (ρ, φ, z), ρ is the radial coordinate in the (x, y) plane and φ is the
azimuthal angle:

x = ρ cosφ ẋ = cosφ ρ̇− ρ sinφ φ̇ (6.33)

y = ρ sinφ ẏ = sinφ ρ̇+ ρ cosφ φ̇ , (6.34)

and the third, orthogonal coordinate is of course z. The kinetic energy is

T = 1
2m
(
ẋ2 + ẏ2 + ẋ2

)

= 1
2m
(
ρ̇2 + ρ2 φ̇2 + ż2

)
. (6.35)

When the motion is confined to a plane with z = const., this coordinate system is often
referred to as ‘two-dimensional polar’ coordinates.

In spherical coordinates (r, θ, φ), r is the radius, θ is the polar angle, and φ is the azimuthal
angle. On the globe, θ would be the ‘colatitude’, which is θ = π

2 −λ, where λ is the latitude.
I.e. θ = 0 at the north pole. In spherical polar coordinates,

x = r sin θ cosφ ẋ = sin θ cosφ ṙ + r cos θ cosφ θ̇ − r sin θ sinφ φ̇ (6.36)

y = r sin θ sinφ ẏ = sin θ sinφ ṙ + r cos θ sinφ θ̇ + r sin θ cosφ φ̇ (6.37)

z = r cos θ ż = cos θ ṙ − r sin θ θ̇ . (6.38)
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The kinetic energy is

T = 1
2m
(
ẋ2 + ẏ2 + ż2

)

= 1
2m
(
ṙ2 + r2 θ̇2 + r2 sin2θ φ̇2

)
. (6.39)

6.5 How to Solve Mechanics Problems

Here are some simple steps you can follow toward obtaining the equations of motion:

1. Choose a set of generalized coordinates {q1, . . . , qn}.

2. Find the kinetic energy T (q, q̇, t), the potential energy U(q, t), and the Lagrangian
L(q, q̇, t) = T − U . It is often helpful to first write the kinetic energy in Cartesian
coordinates for each particle before converting to generalized coordinates.

3. Find the canonical momenta pσ = ∂L
∂q̇σ

and the generalized forces Fσ = ∂L
∂qσ

.

4. Evaluate the time derivatives ṗσ and write the equations of motion ṗσ = Fσ. Be careful
to differentiate properly, using the chain rule and the Leibniz rule where appropriate.

5. Identify any conserved quantities (more about this later).

6.6 Examples

6.6.1 One-dimensional motion

For a one-dimensional mechanical system with potential energy U(x),

L = T − U = 1
2mẋ

2 − U(x) . (6.40)

The canonical momentum is

p =
∂L

∂ẋ
= mẋ (6.41)

and the equation of motion is

d

dt

(
∂L

∂ẋ

)
=
∂L

∂x
⇒ mẍ = −U ′(x) , (6.42)

which is of course F = ma.

Note that we can multiply the equation of motion by ẋ to get

0 = ẋ
{
mẍ+ U ′(x)

}
=

d

dt

{
1
2mẋ

2 + U(x)
}

=
dE

dt
, (6.43)

where E = T + U .
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6.6.2 Central force in two dimensions

Consider next a particle of mass m moving in two dimensions under the influence of a
potential U(ρ) which is a function of the distance from the origin ρ =

√
x2 + y2. Clearly

cylindrical (2d polar) coordinates are called for:

L = 1
2m
(
ρ̇2 + ρ2 φ̇2

)
− U(ρ) . (6.44)

The equations of motion are

d

dt

(
∂L

∂ρ̇

)
=
∂L

∂ρ
⇒ mρ̈ = mρ φ̇2 − U ′(ρ) (6.45)

d

dt

(
∂L

∂φ̇

)
=
∂L

∂φ
⇒ d

dt

(
mρ2 φ̇

)
= 0 . (6.46)

Note that the canonical momentum conjugate to φ, which is to say the angular momentum,
is conserved:

pφ = mρ2 φ̇ = const. (6.47)

We can use this to eliminate φ̇ from the first Euler-Lagrange equation, obtaining

mρ̈ =
p2
φ

mρ3
− U ′(ρ) . (6.48)

We can also write the total energy as

E = 1
2m
(
ρ̇2 + ρ2 φ̇2

)
+ U(ρ)

= 1
2mρ̇2 +

p2
φ

2mρ2
+ U(ρ) , (6.49)

from which it may be shown that E is also a constant:

dE

dt
=
(
mρ̈−

p2
φ

mρ3
+ U ′(ρ)

)
ρ̇ = 0 . (6.50)

We shall discuss this case in much greater detail in the coming weeks.

6.6.3 A sliding point mass on a sliding wedge

Consider the situation depicted in Fig. 6.1, in which a point object of mass m slides
frictionlessly along a wedge of opening angle α. The wedge itself slides frictionlessly along a
horizontal surface, and its mass is M . We choose as generalized coordinates the horizontal
position X of the left corner of the wedge, and the horizontal distance x from the left corner
to the sliding point mass. The vertical coordinate of the sliding mass is then y = x tanα,



6.6. EXAMPLES 87

Figure 6.1: A wedge of mass M and opening angle α slides frictionlessly along a horizontal
surface, while a small object of mass m slides frictionlessly along the wedge.

where the horizontal surface lies at y = 0. With these generalized coordinates, the kinetic
energy is

T = 1
2MẊ2 + 1

2m (Ẋ + ẋ)2 + 1
2mẏ

2

= 1
2 (M +m)Ẋ2 +mẊẋ+ 1

2m (1 + tan2α) ẋ2 . (6.51)

The potential energy is simply

U = mgy = mg x tanα . (6.52)

Thus, the Lagrangian is

L = 1
2(M +m)Ẋ2 +mẊẋ+ 1

2m (1 + tan2α) ẋ2 −mg x tanα , (6.53)

and the equations of motion are

d

dt

(
∂L

∂Ẋ

)
=
∂L

∂X
⇒ (M +m)Ẍ +mẍ = 0

d

dt

(
∂L

∂ẋ

)
=
∂L

∂x
⇒ mẌ +m (1 + tan2α) ẍ = −mg tanα . (6.54)

At this point we can use the first of these equations to write

Ẍ = − m

M +m
ẍ . (6.55)

Substituting this into the second equation, we obtain the constant accelerations

ẍ = −(M +m)g sinα cosα

M +m sin2α
, Ẍ =

mg sinα cosα

M +m sin2α
. (6.56)
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Figure 6.2: The spring–pendulum system.

6.6.4 A pendulum attached to a mass on a spring

Consider next the system depicted in Fig. 6.2 in which a mass M moves horizontally while
attached to a spring of spring constant k. Hanging from this mass is a pendulum of arm
length ℓ and bob mass m.

A convenient set of generalized coordinates is (x, θ), where x is the displacement of the mass
M relative to the equilibrium extension a of the spring, and θ is the angle the pendulum
arm makes with respect to the vertical. Let the Cartesian coordinates of the pendulum bob
be (x1, y1). Then

x1 = a+ x+ ℓ sin θ , y1 = −l cos θ . (6.57)

The kinetic energy is

T = 1
2Mẋ2 + 1

2m (ẋ2 + ẏ2)

= 1
2Mẋ2 + 1

2m
[
(ẋ+ ℓ cos θ θ̇)2 + (ℓ sin θ θ̇)2

]

= 1
2(M +m) ẋ2 + 1

2mℓ
2 θ̇2 +mℓ cos θ ẋ θ̇ , (6.58)

and the potential energy is

U = 1
2kx

2 +mgy1

= 1
2kx

2 −mgℓ cos θ . (6.59)

Thus,

L = 1
2 (M +m) ẋ2 + 1

2mℓ
2 θ̇2 +mℓ cos θ ẋ θ̇ − 1

2kx
2 +mgℓ cos θ . (6.60)
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The canonical momenta are

px =
∂L

∂ẋ
= (M +m) ẋ+mℓ cos θ θ̇

pθ =
∂L

∂θ̇
= mℓ cos θ ẋ+mℓ2 θ̇ , (6.61)

and the canonical forces are

Fx =
∂L

∂x
= −kx

Fθ =
∂L

∂θ
= −mℓ sin θ ẋ θ̇ −mgℓ sin θ . (6.62)

The equations of motion then yield

(M +m) ẍ+mℓ cos θ θ̈ −mℓ sin θ θ̇2 = −kx (6.63)

mℓ cos θ ẍ+mℓ2 θ̈ = −mgℓ sin θ . (6.64)

Small Oscillations : If we assume both x and θ are small, we may write sin θ ≈ θ and
cos θ ≈ 1, in which case the equations of motion may be linearized to

(M +m) ẍ+mℓ θ̈ + kx = 0 (6.65)

mℓ ẍ+mℓ2 θ̈ +mgℓ θ = 0 . (6.66)

If we define

u ≡ x

ℓ
, α ≡ m

M
, ω2

0 ≡
k

M
, ω2

1 ≡
g

ℓ
, (6.67)

then

(1 + α) ü+ α θ̈ + ω2
0 u = 0 (6.68)

ü+ θ̈ + ω2
1 θ = 0 . (6.69)

We can solve by writing (
u(t)
θ(t)

)
=

(
a
b

)
e−iωt , (6.70)

in which case (
ω2

0 − (1 + α)ω2 −αω2

−ω2 ω2
1 − ω2

)(
a
b

)
=

(
0
0

)
. (6.71)

In order to have a nontrivial solution (i.e. without a = b = 0), the determinant of the above
2× 2 matrix must vanish. This gives a condition on ω2, with solutions

ω2
± = 1

2

(
ω2

0 + (1 + α)ω2
1

)
± 1

2

√(
ω2

0 − ω2
1

)2
+ 2α (ω2

0 + ω2
1)ω

2
1 . (6.72)
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Figure 6.3: The double pendulum, with generalized coordinates θ1 and θ2. All motion is
confined to a single plane.

6.6.5 The double pendulum

As yet another example of the generalized coordinate approach to Lagrangian dynamics,
consider the double pendulum system, sketched in Fig. 6.3. We choose as generalized
coordinates the two angles θ1 and θ2. In order to evaluate the Lagrangian, we must obtain
the kinetic and potential energies in terms of the generalized coordinates {θ1, θ2} and their
corresponding velocities {θ̇1, θ̇2}.

In Cartesian coordinates,

T = 1
2m1 (ẋ2

1 + ẏ2
1) + 1

2m2 (ẋ2
2 + ẏ2

2) (6.73)

U = m1 g y1 +m2 g y2 . (6.74)

We therefore express the Cartesian coordinates {x1, y1, x2, y2} in terms of the generalized
coordinates {θ1, θ2}:

x1 = ℓ1 sin θ1 x2 = ℓ1 sin θ1 + ℓ2 sin θ2 (6.75)

y1 = −ℓ1 cos θ1 y2 = −ℓ1 cos θ1 − ℓ2 cos θ2 . (6.76)

Thus, the velocities are

ẋ1 = ℓ1 θ̇1 cos θ1 ẋ2 = ℓ1 θ̇1 cos θ1 + ℓ2 θ̇2 cos θ2 (6.77)

ẏ1 = ℓ1 θ̇1 sin θ1 ẏ2 = ℓ1 θ̇1 sin θ1 + ℓ2 θ̇2 sin θ2 . (6.78)

Thus,

T = 1
2m1 ℓ

2
1 θ̇

2
1 + 1

2m2

{
ℓ21 θ̇

2
1 + 2ℓ1 ℓ2 cos(θ1 − θ2) θ̇1 θ̇2 + ℓ22 θ̇

2
2

}
(6.79)

U = −m1 g ℓ1 cos θ1 −m2 g ℓ1 cos θ1 −m2 g ℓ2 cos θ2 , (6.80)
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and

L = T − U = 1
2(m1 +m2) ℓ

2
1 θ̇

2
1 +m2 ℓ1 ℓ2 cos(θ1 − θ2) θ̇1 θ̇2 + 1

2m2 ℓ
2
2 θ̇

2
2

+ (m1 +m2) g ℓ1 cos θ1 +m2 g ℓ2 cos θ2 . (6.81)

The generalized (canonical) momenta are

p1 =
∂L

∂θ̇1
= (m1 +m2) ℓ

2
1 θ̇1 +m2 ℓ1 ℓ2 cos(θ1 − θ2) θ̇2 (6.82)

p2 =
∂L

∂θ̇2
= m2 ℓ1 ℓ2 cos(θ1 − θ2) θ̇1 +m2 ℓ

2
2 θ̇2 , (6.83)

and the equations of motion are

ṗ1 = (m1 +m2) ℓ
2
1 θ̈1 +m2 ℓ1 ℓ2 cos(θ1 − θ2) θ̈2 −m2 ℓ1 ℓ2 sin(θ1 − θ2) (θ̇1 − θ̇2) θ̇2

= −(m1 +m2) g ℓ1 sin θ1 −m2 ℓ1 ℓ2 sin(θ1 − θ2) θ̇1 θ̇2 =
∂L

∂θ1
(6.84)

and

ṗ2 = m2 ℓ1 ℓ2 cos(θ1 − θ2) θ̈1 −m2 ℓ1 ℓ2 sin(θ1 − θ2) (θ̇1 − θ̇2) θ̇1 +m2 ℓ
2
2 θ̈2

= −m2 g ℓ2 sin θ2 +m2 ℓ1 ℓ2 sin(θ1 − θ2) θ̇1 θ̇2 =
∂L

∂θ2
. (6.85)

We therefore find

ℓ1 θ̈1 +
m2 ℓ2

m1 +m2
cos(θ1 − θ2) θ̈2 +

m2 ℓ2
m1 +m2

sin(θ1 − θ2) θ̇2
2 + g sin θ1 = 0 (6.86)

ℓ1 cos(θ1 − θ2) θ̈1 + ℓ2 θ̈2 − ℓ1 sin(θ1 − θ2) θ̇2
1 + g sin θ2 = 0 . (6.87)

Small Oscillations : The equations of motion are coupled, nonlinear second order ODEs.
When the system is close to equilibrium, the amplitudes of the motion are small, and we
may expand in powers of the θ1 and θ2. The linearized equations of motion are then

θ̈1 + αβ θ̈2 + ω2
0 θ1 = 0 (6.88)

θ̈1 + β θ̈2 + ω2
0 θ2 = 0 , (6.89)

where we have defined

α ≡ m2

m1 +m2

, β ≡ ℓ2
ℓ1

, ω2
0 ≡

g

ℓ1
. (6.90)
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We can solve this coupled set of equations by a nifty trick. Let’s take a linear combination
of the first equation plus an undetermined coefficient, r, times the second:

(1 + r) θ̈1 + (α+ r)β θ̈2 + ω2
0 (θ1 + r θ2) = 0 . (6.91)

We now demand that the ratio of the coefficients of θ2 and θ1 is the same as the ratio of
the coefficients of θ̈2 and θ̈1:

(α+ r)β

1 + r
= r ⇒ r± = 1

2(β − 1)± 1
2

√
(1− β)2 + 4αβ (6.92)

When r = r±, the equation of motion may be written

d2

dt2
(
θ1 + r± θ2

)
= − ω2

0

1 + r±

(
θ1 + r± θ2

)
(6.93)

and defining the (unnormalized) normal modes

ξ± ≡
(
θ1 + r± θ2

)
, (6.94)

we find

ξ̈± + ω2
± ξ± = 0 , (6.95)

with

ω± =
ω0√

1 + r±
. (6.96)

Thus, by switching to the normal coordinates, we decoupled the equations of motion, and
identified the two normal frequencies of oscillation. We shall have much more to say about
small oscillations further below.

For example, with ℓ1 = ℓ2 = ℓ and m1 = m2 = m, we have α = 1
2 , and β = 1, in which case

r± = ± 1√
2

, ξ± = θ1 ± 1√
2
θ2 , ω± =

√
2∓
√

2

√
g

ℓ
. (6.97)

Note that the oscillation frequency for the ‘in-phase’ mode ξ+ is low, and that for the ‘out
of phase’ mode ξ− is high.

6.6.6 The thingy

Four massless rods of length L are hinged together at their ends to form a rhombus. A
particle of mass M is attached to each vertex. The opposite corners are joined by springs
of spring constant k. In the square configuration, the strings are unstretched. The motion
is confined to a plane, and the particles move only along the diagonals of the rhombus.
Introduce suitable generalized coordinates and find the Lagrangian of the system. Deduce
the equations of motion and find the frequency of small oscillations about equilibrium.
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Solution

The rhombus is depicted in figure 6.4. Let a be the equilibrium length of the springs; clearly
L = a√

2
. Let φ be half of one of the opening angles, as shown. Then the masses are located

at (±X, 0) and (0,±Y ), with X = a√
2
cosφ and Y = a√

2
sinφ. The spring extensions are

δX = 2X − a and δY = 2Y − a. The kinetic and potential energies are therefore

Figure 6.4: The thingy: a rhombus with opening angles 2φ and π − 2φ.

T = M
(
Ẋ2 + Ẏ 2

)

= 1
2Ma2 φ̇2

and

U = 1
2k
(
δX
)2

+ 1
2k
(
δY
)2

= 1
2ka

2
{(√

2 cosφ− 1
)2

+
(√

2 sinφ− 1
)2}

= 1
2ka

2
{
3− 2

√
2(cos φ+ sinφ)

}
.

Note that minimizing U(φ) gives sinφ = cosφ, i.e. φeq = π
4 . The Lagrangian is then

L = T − U = 1
2Ma2 φ̇2 +

√
2 ka2

(
cosφ+ sinφ

)
+ const.
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The equations of motion are

d

dt

∂L

∂φ̇
=
∂L

∂φ
⇒ Ma2 φ̈ =

√
2 ka2 (cosφ− sinφ)

It’s always smart to expand about equilibrium, so let’s write φ = π
4 + δ, which leads to

δ̈ + ω2
0 sin δ = 0 ,

with ω0 =
√

2k/M . This is the equation of a pendulum! Linearizing gives δ̈ + ω2
0 δ = 0, so

the small oscillation frequency is just ω0.

6.7 Appendix : Virial Theorem

The virial theorem is a statement about the time-averaged motion of a mechanical system.
Define the virial ,

G(q, p) =
∑

σ

pσ qσ . (6.98)

Then

dG

dt
=
∑

σ

(
ṗσ qσ + pσ q̇σ

)

=
∑

σ

qσ Fσ +
∑

σ

q̇σ
∂L

∂q̇σ
. (6.99)

Now suppose that T = 1
2

∑
σ,σ′ Tσσ′ q̇σ q̇σ′ is homogeneous of degree k = 2 in q̇, and that U

is homogeneous of degree zero in q̇. Then

∑

σ

q̇σ
∂L

∂q̇σ
=
∑

σ

q̇σ
∂T

∂q̇σ
= 2T, (6.100)

which follows from Euler’s theorem on homogeneous functions.

Now consider the time average of Ġ over a period τ :

〈dG
dt

〉
=

1

τ

τ∫

0

dt
dG

dt

=
1

τ

[
G(τ) −G(0)

]
. (6.101)

If G(t) is bounded, then in the limit τ →∞ we must have 〈Ġ〉 = 0. Any bounded motion,

such as the orbit of the earth around the Sun, will result in 〈Ġ〉τ→∞ = 0. But then

〈dG
dt

〉
= 2 〈T 〉+

〈∑

σ

qσ Fσ
〉

= 0 , (6.102)
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which implies

〈T 〉 = −1
2

〈∑

σ

qσ Fσ

〉
= +

〈
1
2

∑

σ

qσ
∂U

∂qσ

〉

=
〈

1
2

∑

i

ri ·∇iU
(
r1, . . . , rN

)〉
(6.103)

= 1
2k 〈U〉 , (6.104)

where the last line pertains to homogeneous potentials of degree k. Finally, since T+U = E
is conserved, we have

〈T 〉 = k E

k + 2
, 〈U〉 =

2E

k + 2
. (6.105)
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Chapter 7

Noether’s Theorem

7.1 Continuous Symmetry Implies Conserved Charges

Consider a particle moving in two dimensions under the influence of an external potential
U(r). The potential is a function only of the magnitude of the vector r. The Lagrangian is
then

L = T − U = 1
2m
(
ṙ2 + r2 φ̇2

)
− U(r) , (7.1)

where we have chosen generalized coordinates (r, φ). The momentum conjugate to φ is

pφ = mr2 φ̇. The generalized force Fφ clearly vanishes, since L does not depend on the
coordinate φ. (One says that L is ‘cyclic’ in φ.) Thus, although r = r(t) and φ = φ(t)

will in general be time-dependent, the combination pφ = mr2 φ̇ is constant. This is the
conserved angular momentum about the ẑ axis.

If instead the particle moved in a potential U(y), independent of x, then writing

L = 1
2m
(
ẋ2 + ẏ2

)
− U(y) , (7.2)

we have that the momentum px = ∂L/∂ẋ = mẋ is conserved, because the generalized force

Fx = ∂L/∂x = 0 vanishes. This situation pertains in a uniform gravitational field, with
U(x, y) = mgy, independent of x. The horizontal component of momentum is conserved.

In general, whenever the system exhibits a continuous symmetry , there is an associated
conserved charge. (The terminology ‘charge’ is from field theory.) Indeed, this is a rigorous
result, known as Noether’s Theorem. Consider a one-parameter family of transformations,

qσ −→ q̃σ(q, ζ) , (7.3)

where ζ is the continuous parameter. Suppose further (without loss of generality) that at
ζ = 0 this transformation is the identity, i.e. q̃σ(q, 0) = qσ. The transformation may be
nonlinear in the generalized coordinates. Suppose further that the Lagrangian L is invariant

97
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under the replacement q → q̃. Then we must have

0 =
d

dζ

∣∣∣∣∣
ζ=0

L(q̃, ˙̃q, t) =
∂L

∂qσ

∂q̃σ
∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂q̇σ

∂ ˙̃qσ
∂ζ

∣∣∣∣∣
ζ=0

=
d

dt

(
∂L

∂q̇σ

)
∂q̃σ
∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂q̇σ

d

dt

(
∂q̃σ
∂ζ

)

ζ=0

=
d

dt

(
∂L

∂q̇σ

∂q̃σ
∂ζ

)

ζ=0

. (7.4)

Thus, there is an associated conserved charge

Λ =
∂L

∂q̇σ

∂q̃σ
∂ζ

∣∣∣∣∣
ζ=0

. (7.5)

7.1.1 Examples of one-parameter families of transformations

Consider the Lagrangian

L = 1
2m(ẋ2 + ẏ2)− U

(√
x2 + y2

)
. (7.6)

In two-dimensional polar coordinates, we have

L = 1
2m(ṙ2 + r2φ̇2)− U(r) , (7.7)

and we may now define

r̃(ζ) = r (7.8)

φ̃(ζ) = φ+ ζ . (7.9)

Note that r̃(0) = r and φ̃(0) = φ, i.e. the transformation is the identity when ζ = 0. We
now have

Λ =
∑

σ

∂L

∂q̇σ

∂q̃σ
∂ζ

∣∣∣∣∣
ζ=0

=
∂L

∂ṙ

∂r̃

∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂φ̇

∂φ̃

∂ζ

∣∣∣∣∣
ζ=0

= mr2φ̇ . (7.10)

Another way to derive the same result which is somewhat instructive is to work out the
transformation in Cartesian coordinates. We then have

x̃(ζ) = x cos ζ − y sin ζ (7.11)

ỹ(ζ) = x sin ζ + y cos ζ . (7.12)

Thus,
∂x̃

∂ζ
= −ỹ ,

∂ỹ

∂ζ
= x̃ (7.13)
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and

Λ =
∂L

∂ẋ

∂x̃

∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂ẏ

∂ỹ

∂ζ

∣∣∣∣∣
ζ=0

= m(xẏ − yẋ) . (7.14)

But
m(xẏ − yẋ) = mẑ · r × ṙ = mr2φ̇ . (7.15)

As another example, consider the potential

U(ρ, φ, z) = V (ρ, aφ+ z) , (7.16)

where (ρ, φ, z) are cylindrical coordinates for a particle of mass m, and where a is a constant
with dimensions of length. The Lagrangian is

1
2m
(
ρ̇2 + ρ2φ̇2 + ż2

)
− V (ρ, aφ+ z) . (7.17)

This model possesses a helical symmetry, with a one-parameter family

ρ̃(ζ) = ρ (7.18)

φ̃(ζ) = φ+ ζ (7.19)

z̃(ζ) = z − ζa . (7.20)

Note that
aφ̃+ z̃ = aφ+ z , (7.21)

so the potential energy, and the Lagrangian as well, is invariant under this one-parameter
family of transformations. The conserved charge for this symmetry is

Λ =
∂L

∂ρ̇

∂ρ̃

∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂φ̇

∂φ̃

∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂ż

∂z̃

∂ζ

∣∣∣∣∣
ζ=0

= mρ2φ̇−maż . (7.22)

We can check explicitly that Λ is conserved, using the equations of motion

d

dt

(
∂L

∂φ̇

)
=

d

dt

(
mρ2φ̇

)
=
∂L

∂φ
= −a∂V

∂z
(7.23)

d

dt

(
∂L

∂ż

)
=

d

dt
(mż) =

∂L

∂z
= −∂V

∂z
. (7.24)

Thus,

Λ̇ =
d

dt

(
mρ2φ̇

)
− a d

dt
(mż) = 0 . (7.25)

7.2 Conservation of Linear and Angular Momentum

Suppose that the Lagrangian of a mechanical system is invariant under a uniform translation
of all particles in the n̂ direction. Then our one-parameter family of transformations is given
by

x̃a = xa + ζ n̂ , (7.26)
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and the associated conserved Noether charge is

Λ =
∑

a

∂L

∂ẋa
· n̂ = n̂ · P , (7.27)

where P =
∑

a pa is the total momentum of the system.

If the Lagrangian of a mechanical system is invariant under rotations about an axis n̂, then

x̃a = R(ζ, n̂)xa

= xa + ζ n̂× xa +O(ζ2) , (7.28)

where we have expanded the rotation matrix R(ζ, n̂) in powers of ζ. The conserved Noether
charge associated with this symmetry is

Λ =
∑

a

∂L

∂ẋa
· n̂× xa = n̂ ·

∑

a

xa × pa = n̂ · L , (7.29)

where L is the total angular momentum of the system.

7.3 Advanced Discussion : Invariance of L vs. Invariance of

S

Observant readers might object that demanding invariance of L is too strict. We should
instead be demanding invariance of the action S1. Suppose S is invariant under

t→ t̃(q, t, ζ) (7.30)

qσ(t)→ q̃σ(q, t, ζ) . (7.31)

Then invariance of S means

S =

tb∫

ta

dtL(q, q̇, t) =

t̃b∫

t̃a

dtL(q̃, ˙̃q, t) . (7.32)

Note that t is a dummy variable of integration, so it doesn’t matter whether we call it t
or t̃. The endpoints of the integral, however, do change under the transformation. Now
consider an infinitesimal transformation, for which δt = t̃− t and δq = q̃

(
t̃
)
− q(t) are both

small. Thus,

S =

tb∫

ta

dtL(q, q̇, t) =

tb+δtb∫

ta+δta

dt
{
L(q, q̇, t) +

∂L

∂qσ
δ̄qσ +

∂L

∂q̇σ
δ̄q̇σ + . . .

}
, (7.33)

1Indeed, we should be demanding that S only change by a function of the endpoint values.
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where

δ̄qσ(t) ≡ q̃σ(t)− qσ(t)
= q̃σ

(
t̃
)
− q̃σ

(
t̃
)

+ q̃σ(t)− qσ(t)
= δqσ − q̇σ δt +O(δq δt) (7.34)

Subtracting eqn. 7.33 from eqn. 7.32, we obtain

0 = Lb δtb − La δta +
∂L

∂q̇σ

∣∣∣∣
b

δ̄qσ,b −
∂L

∂q̇σ

∣∣∣∣
a

δ̄qσ,a +

tb+δtb∫

ta+δta

dt

{
∂L

∂qσ
− d

dt

(
∂L

∂q̇σ

)}
δ̄qσ(t)

=

tb∫

ta

dt
d

dt

{(
L− ∂L

∂q̇σ
q̇σ

)
δt +

∂L

∂q̇σ
δqσ

}
, (7.35)

where La,b is L(q, q̇, t) evaluated at t = ta,b. Thus, if ζ ≡ δζ is infinitesimal, and

δt = A(q, t) δζ (7.36)

δqσ = Bσ(q, t) δζ , (7.37)

then the conserved charge is

Λ =

(
L− ∂L

∂q̇σ
q̇σ

)
A(q, t) +

∂L

∂q̇σ
Bσ(q, t)

= −H(q, p, t)A(q, t) + pσBσ(q, t) . (7.38)

Thus, when A = 0, we recover our earlier results, obtained by assuming invariance of L.
Note that conservation of H follows from time translation invariance: t→ t+ ζ, for which
A = 1 and Bσ = 0. Here we have written

H = pσ q̇σ − L , (7.39)

and expressed it in terms of the momenta pσ, the coordinates qσ, and time t. H is called
the Hamiltonian.

7.3.1 The Hamiltonian

The Lagrangian is a function of generalized coordinates, velocities, and time. The canonical
momentum conjugate to the generalized coordinate qσ is

pσ =
∂L

∂q̇σ
. (7.40)
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The Hamiltonian is a function of coordinates, momenta, and time. It is defined as the
Legendre transform of L:

H(q, p, t) =
∑

σ

pσ q̇σ − L . (7.41)

Let’s examine the differential of H:

dH =
∑

σ

(
q̇σ dpσ + pσ dq̇σ −

∂L

∂qσ
dqσ −

∂L

∂q̇σ
dq̇σ

)
− ∂L

∂t
dt

=
∑

σ

(
q̇σ dpσ −

∂L

∂qσ
dqσ

)
− ∂L

∂t
dt , (7.42)

where we have invoked the definition of pσ to cancel the coefficients of dq̇σ. Since ṗσ =
∂L/∂qσ, we have Hamilton’s equations of motion,

q̇σ =
∂H

∂pσ
, ṗσ = −∂H

∂qσ
. (7.43)

Thus, we can write

dH =
∑

σ

(
q̇σ dpσ − ṗσ dqσ

)
− ∂L

∂t
dt . (7.44)

Dividing by dt, we obtain
dH

dt
= −∂L

∂t
, (7.45)

which says that the Hamiltonian is conserved (i.e. it does not change with time) whenever
there is no explicit time dependence to L.

Example #1 : For a simple d = 1 system with L = 1
2mẋ

2 − U(x), we have p = mẋ and

H = p ẋ− L = 1
2mẋ

2 + U(x) =
p2

2m
+ U(x) . (7.46)

Example #2 : Consider now the mass point – wedge system analyzed above, with

L = 1
2(M +m)Ẋ2 +mẊẋ+ 1

2m (1 + tan2α) ẋ2 −mg x tanα , (7.47)

The canonical momenta are

P =
∂L

∂Ẋ
= (M +m) Ẋ +mẋ (7.48)

p =
∂L

∂ẋ
= mẊ +m (1 + tan2α) ẋ . (7.49)

The Hamiltonian is given by

H = P Ẋ + p ẋ− L
= 1

2(M +m)Ẋ2 +mẊẋ+ 1
2m (1 + tan2α) ẋ2 +mg x tanα . (7.50)
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However, this is not quite H, since H = H(X,x, P, p, t) must be expressed in terms of the
coordinates and the momenta and not the coordinates and velocities. So we must eliminate
Ẋ and ẋ in favor of P and p. We do this by inverting the relations

(
P
p

)
=

(
M +m m
m m (1 + tan2α)

)(
Ẋ
ẋ

)
(7.51)

to obtain
(
Ẋ
ẋ

)
=

1

m
(
M + (M +m) tan2α

)
(
m (1 + tan2α) −m

−m M +m

)(
P
p

)
. (7.52)

Substituting into 7.50, we obtain

H =
M +m

2m

P 2 cos2α

M +m sin2α
− Pp cos2α

M +m sin2α
+

p2

2 (M +m sin2α)
+mg x tanα . (7.53)

Notice that Ṗ = 0 since ∂L
∂X = 0. P is the total horizontal momentum of the system (wedge

plus particle) and it is conserved.

7.3.2 Is H = T + U ?

The most general form of the kinetic energy is

T = T2 + T1 + T0

= 1
2T

(2)
σσ′(q, t) q̇σ q̇σ′ + T (1)

σ (q, t) q̇σ + T (0)(q, t) , (7.54)

where T (n)(q, q̇, t) is homogeneous of degree n in the velocities2. We assume a potential
energy of the form

U = U1 + U0

= U (1)
σ (q, t) q̇σ + U (0)(q, t) , (7.55)

which allows for velocity-dependent forces, as we have with charged particles moving in an
electromagnetic field. The Lagrangian is then

L = T −U = 1
2T

(2)
σσ′(q, t) q̇σ q̇σ′ + T (1)

σ (q, t) q̇σ + T (0)(q, t)−U (1)
σ (q, t) q̇σ −U (0)(q, t) . (7.56)

The canonical momentum conjugate to qσ is

pσ =
∂L

∂q̇σ
= T

(2)
σσ′ q̇σ′ + T (1)

σ (q, t)− U (1)
σ (q, t) (7.57)

which is inverted to give

q̇σ = T
(2)
σσ′

−1 (
pσ′ − T

(1)
σ′ + U

(1)
σ′

)
. (7.58)

2A homogeneous function of degree k satisfies f(λx1, . . . , λxn) = λkf(x1, . . . , xn). It is then easy to prove
Euler’s theorem,

Pn
i=1 xi

∂f
∂xi

= kf .
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The Hamiltonian is then

H = pσ q̇σ − L

= 1
2 T

(2)
σσ′

−1(
pσ − T (1)

σ + U (1)
σ

)(
pσ′ − T

(1)
σ′ + U

(1)
σ′

)
− T0 + U0 (7.59)

= T2 − T0 + U0 . (7.60)

If T0, T1, and U1 vanish, i.e. if T (q, q̇, t) is a homogeneous function of degree two in the
generalized velocities, and U(q, t) is velocity-independent, then H = T +U . But if T0 or T1

is nonzero, or the potential is velocity-dependent, then H 6= T + U .

7.3.3 Example: A bead on a rotating hoop

Consider a bead of mass m constrained to move along a hoop of radius a. The hoop is
further constrained to rotate with angular velocity φ̇ = ω about the ẑ-axis, as shown in
Fig. 7.1.

The most convenient set of generalized coordinates is spherical polar (r, θ, φ), in which case

T = 1
2m
(
ṙ2 + r2 θ̇2 + r2 sin2 θ φ̇2

)

= 1
2ma

2
(
θ̇2 + ω2 sin2 θ

)
. (7.61)

Thus, T2 = 1
2ma

2θ̇2 and T0 = 1
2ma

2ω2 sin2 θ. The potential energy is U(θ) = mga(1−cos θ).

The momentum conjugate to θ is pθ = ma2θ̇, and thus

H(θ, p) = T2 − T0 + U

= 1
2ma

2θ̇2 − 1
2ma

2ω2 sin2 θ +mga(1 − cos θ)

=
p2
θ

2ma2
− 1

2ma
2ω2 sin2 θ +mga(1− cos θ) . (7.62)

For this problem, we can define the effective potential

Ueff(θ) ≡ U − T0 = mga(1 − cos θ)− 1
2ma

2ω2 sin2 θ

= mga
(
1− cos θ − ω2

2ω2
0

sin2 θ
)
, (7.63)

where ω2
0 ≡ g/a. The Lagrangian may then be written

L = 1
2ma

2θ̇2 − Ueff(θ) , (7.64)

and thus the equations of motion are

ma2θ̈ = −∂Ueff

∂θ
. (7.65)
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Figure 7.1: A bead of mass m on a rotating hoop of radius a.

Equilibrium is achieved when U ′
eff(θ) = 0, which gives

∂Ueff

∂θ
= mga sin θ

{
1− ω2

ω2
0

cos θ
}

= 0 , (7.66)

i.e. θ∗ = 0, θ∗ = π, or θ∗ = ± cos−1(ω2
0/ω

2), where the last pair of equilibria are present
only for ω2 > ω2

0 . The stability of these equilibria is assessed by examining the sign of
U ′′

eff(θ∗). We have

U ′′
eff(θ) = mga

{
cos θ − ω2

ω2
0

(
2 cos2 θ − 1

)}
. (7.67)

Thus,

U ′′
eff(θ∗) =





mga
(
1− ω2

ω2
0

)
at θ∗ = 0

−mga
(
1 + ω2

ω2
0

)
at θ∗ = π

mga
(
ω2

ω2
0
− ω2

0
ω2

)
at θ∗ = ± cos−1

(
ω2

0
ω2

)
.

(7.68)

Thus, θ∗ = 0 is stable for ω2 < ω2
0 but becomes unstable when the rotation frequency ω

is sufficiently large, i.e. when ω2 > ω2
0 . In this regime, there are two new equilibria, at

θ∗ = ± cos−1(ω2
0/ω

2), which are both stable. The equilibrium at θ∗ = π is always unstable,
independent of the value of ω. The situation is depicted in Fig. 7.2.
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Figure 7.2: The effective potential Ueff(θ) = mga
[
1−cos θ− ω2

2ω2
0

sin2 θ
]
. (The dimensionless

potential Ũeff(x) = Ueff/mga is shown, where x = θ/π.) Left panels: ω = 1
2

√
3ω0. Right

panels: ω =
√

3ω0.

7.4 Charged Particle in a Magnetic Field

Consider next the case of a charged particle moving in the presence of an electromagnetic
field. The particle’s potential energy is

U(r, ṙ) = q φ(r, t)− q

c
A(r, t) · ṙ , (7.69)

which is velocity-dependent. The kinetic energy is T = 1
2m ṙ

2, as usual. Here φ(r) is the
scalar potential and A(r) the vector potential. The electric and magnetic fields are given
by

E = −∇φ− 1

c

∂A

∂t
, B = ∇×A . (7.70)

The canonical momentum is

p =
∂L

∂ṙ
= m ṙ +

q

c
A , (7.71)
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and hence the Hamiltonian is

H(r,p, t) = p · ṙ − L
= mṙ2 +

q

c
A · ṙ − 1

2m ṙ
2 − q

c
A · ṙ + q φ

= 1
2m ṙ

2 + q φ

=
1

2m

(
p− q

c
A(r, t)

)2
+ q φ(r, t) . (7.72)

If A and φ are time-independent, then H(r,p) is conserved.

Let’s work out the equations of motion. We have

d

dt

(
∂L

∂ṙ

)
=
∂L

∂r
(7.73)

which gives

m r̈ +
q

c

dA

dt
= −q∇φ+

q

c
∇(A · ṙ) , (7.74)

or, in component notation,

mẍi +
q

c

∂Ai
∂xj

ẋj +
q

c

∂Ai
∂t

= −q ∂φ
∂xi

+
q

c

∂Aj
∂xi

ẋj , (7.75)

which is to say

mẍi = −q ∂φ
∂xi
− q

c

∂Ai
∂t

+
q

c

(
∂Aj
∂xi
− ∂Ai
∂xj

)
ẋj . (7.76)

It is convenient to express the cross product in terms of the completely antisymmetric tensor
of rank three, ǫijk:

Bi = ǫijk
∂Ak
∂xj

, (7.77)

and using the result

ǫijk ǫimn = δjm δkn − δjn δkm , (7.78)

we have ǫijk Bi = ∂j Ak − ∂k Aj , and

mẍi = −q ∂φ
∂xi
− q

c

∂Ai
∂t

+
q

c
ǫijk ẋj Bk , (7.79)

or, in vector notation,

m r̈ = −q∇φ− q

c

∂A

∂t
+
q

c
ṙ × (∇×A)

= qE +
q

c
ṙ ×B , (7.80)

which is, of course, the Lorentz force law.
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7.5 Fast Perturbations : Rapidly Oscillating Fields

Consider a free particle moving under the influence of an oscillating force,

mq̈ = F sinωt . (7.81)

The motion of the system is then

q(t) = qh(t)−
F sinωt

mω2
, (7.82)

where qh(t) = A + Bt is the solution to the homogeneous (unforced) equation of motion.

Note that the amplitude of the response q − qh goes as ω−2 and is therefore small when ω
is large.

Now consider a general n = 1 system, with

H(q, p, t) = H0(q, p) + V (q) sin(ωt + δ) . (7.83)

We assume that ω is much greater than any natural oscillation frequency associated with
H0. We separate the motion q(t) and p(t) into slow and fast components:

q(t) = q̄(t) + ζ(t) (7.84)

p(t) = p̄(t) + π(t) , (7.85)

where ζ(t) and π(t) oscillate with the driving frequency ω. Since ζ and π will be small, we
expand Hamilton’s equations in these quantities:

˙̄q + ζ̇ =
∂H0

∂p̄
+
∂2H0

∂p̄2
π +

∂2H0

∂q̄ ∂p̄
ζ +

1

2

∂3H0

∂q̄2 ∂p̄
ζ2 +

∂3H0

∂q̄ ∂p̄2
ζπ +

1

2

∂3H0

∂p̄3
π2 + . . . (7.86)

˙̄p+ π̇ = −∂H0

∂q̄
− ∂2H0

∂q̄2
ζ − ∂2H0

∂q̄ ∂p̄
π − 1

2

∂3H0

∂q̄3
ζ2 − ∂3H0

∂q̄2 ∂p̄
ζπ − 1

2

∂3H0

∂q̄ ∂p̄2
π2

− ∂V

∂q̄
sin(ωt+ δ)− ∂2V

∂q̄2
ζ sin(ωt+ δ)− . . . . (7.87)

We now average over the fast degrees of freedom to obtain an equation of motion for the slow
variables q̄ and p̄, which we here carry to lowest nontrivial order in averages of fluctuating
quantities:

˙̄q =
∂H0

∂p̄
+

1

2

∂3H0

∂q̄2 ∂p̄

〈
ζ2
〉

+
∂3H0

∂q̄ ∂p̄2

〈
ζπ
〉

+
1

2

∂3H0

∂p̄3

〈
π2
〉

(7.88)

˙̄p = −∂H0

∂q̄
− 1

2

∂3H0

∂q̄3
〈
ζ2
〉
− ∂3H0

∂q̄2 ∂p̄

〈
ζπ
〉
− 1

2

∂3H0

∂q̄ ∂p̄2

〈
π2
〉
− ∂2V

∂q̄2
〈
ζ sin(ωt+ δ)

〉
. (7.89)

The fast degrees of freedom obey

ζ̇ =
∂2H0

∂q̄ ∂p̄
ζ +

∂2H0

∂p̄2
π (7.90)

π̇ = −∂
2H0

∂q̄2
ζ − ∂2H0

∂q̄ ∂p̄
π − ∂V

∂q
sin(ωt+ δ) . (7.91)
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Let us analyze the coupled equations3

ζ̇ = Aζ +B π (7.92)

π̇ = −C ζ −Aπ + F e−iωt . (7.93)

The solution is of the form (
ζ
π

)
=

(
α
β

)
e−iωt . (7.94)

Plugging in, we find

α =
BF

BC −A2 − ω2
= −BF

ω2
+O

(
ω−4

)
(7.95)

β = − (A+ iω)F

BC −A2 − ω2
=
iF

ω
+O

(
ω−3

)
. (7.96)

Taking the real part, and restoring the phase shift δ, we have

ζ(t) =
−BF
ω2

sin(ωt+ δ) =
1

ω2

∂V

∂q̄

∂2H0

∂p̄2
sin(ωt+ δ) (7.97)

π(t) = −F
ω

cos(ωt+ δ) =
1

ω

∂V

∂q̄
cos(ωt+ δ) . (7.98)

The desired averages, to lowest order, are thus

〈
ζ2
〉

=
1

2ω4

(
∂V

∂q̄

)2(∂2H0

∂p̄2

)2

(7.99)

〈
π2
〉

=
1

2ω2

(
∂V

∂q̄

)2

(7.100)

〈
ζ sin(ωt + δ)

〉
=

1

2ω2

∂V

∂q̄

∂2H0

∂p̄2
, (7.101)

along with
〈
ζπ
〉

= 0.

Finally, we substitute the averages into the equations of motion for the slow variables q̄ and
p̄, resulting in the time-independent effective Hamiltonian

K(q̄, p̄) = H0(q̄, p̄) +
1

4ω2

∂2H0

∂p̄2

(
∂V

∂q̄

)2
, (7.102)

and the equations of motion

˙̄q =
∂K

∂p̄
, ˙̄p = −∂K

∂q̄
. (7.103)

3With real coefficients A, B, and C, one can always take the real part to recover the fast variable equations
of motion.
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7.5.1 Example : pendulum with oscillating support

Consider a pendulum with a vertically oscillating point of support. The coordinates of the
pendulum bob are

x = ℓ sin θ , y = a(t)− ℓ cos θ . (7.104)

The Lagrangian is easily obtained:

L = 1
2mℓ

2 θ̇2 +mℓȧ θ̇ sin θ +mgℓ cos θ + 1
2mȧ

2 −mga (7.105)

= 1
2mℓ

2 θ̇2 +m(g + ä)ℓ cos θ+

these may be dropped︷ ︸︸ ︷
1
2mȧ

2 −mga− d

dt

(
mℓȧ sin θ

)
. (7.106)

Thus we may take the Lagrangian to be

L̄ = 1
2mℓ

2 θ̇2 +m(g + ä)ℓ cos θ , (7.107)

from which we derive the Hamiltonian

H(θ, pθ, t) =
p2
θ

2mℓ2
−mgℓ cos θ −mℓä cos θ (7.108)

= H0(θ, pθ, t) + V1(θ) sinωt . (7.109)

We have assumed a(t) = a0 sinωt, so

V1(θ) = mℓa0 ω
2 cos θ . (7.110)

The effective Hamiltonian, per eqn. 7.102, is

K(θ̄, p̄θ) =
p̄θ

2mℓ2
−mgℓ cos θ̄ + 1

4ma2
0 ω

2 sin2 θ̄ . (7.111)

Let’s define the dimensionless parameter

ǫ ≡ 2gℓ

ω2a2
0

. (7.112)

The slow variable θ̄ executes motion in the effective potential Veff(θ̄) = mgℓ v(θ̄), with

v(θ̄) = − cos θ̄ +
1

2ǫ
sin2 θ̄ . (7.113)

Differentiating, and dropping the bar on θ, we find that Veff(θ) is stationary when

v′(θ) = 0 ⇒ sin θ cos θ = −ǫ sin θ . (7.114)

Thus, θ = 0 and θ = π, where sin θ = 0, are equilibria. When ǫ < 1 (note ǫ > 0 always),
there are two new solutions, given by the roots of cos θ = −ǫ.



7.6. FIELD THEORY: SYSTEMS WITH SEVERAL INDEPENDENT VARIABLES 111

Figure 7.3: Dimensionless potential v(θ) for ǫ = 1.5 (black curve) and ǫ = 0.5 (blue curve).

To assess stability of these equilibria, we compute the second derivative:

v′′(θ) = cos θ +
1

ǫ
cos 2θ . (7.115)

From this, we see that θ = 0 is stable (i.e. v′′(θ = 0) > 0) always, but θ = π is stable for
ǫ < 1 and unstable for ǫ > 1. When ǫ < 1, two new solutions appear, at cos θ = −ǫ, for
which

v′′(cos−1(−ǫ)) = ǫ− 1

ǫ
, (7.116)

which is always negative since ǫ < 1 in order for these equilibria to exist. The situation is
sketched in fig. 7.3, showing v(θ) for two representative values of the parameter ǫ. For ǫ > 1,
the equilibrium at θ = π is unstable, but as ǫ decreases, a subcritical pitchfork bifurcation is
encountered at ǫ = 1, and θ = π becomes stable, while the outlying θ = cos−1(−ǫ) solutions
are unstable.

7.6 Field Theory: Systems with Several Independent Vari-
ables

Suppose φa(x) depends on several independent variables: {x1, x2, . . . , xn}. Furthermore,
suppose

S
[
{φa(x)

]
=

∫

Ω

dxL(φa ∂µφa,x) , (7.117)
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i.e. the Lagrangian density L is a function of the fields φa and their partial derivatives
∂φa/∂xµ. Here Ω is a region in RK . Then the first variation of S is

δS =

∫

Ω

dx

{
∂L
∂φa

δφa +
∂L

∂(∂µφa)

∂ δφa
∂xµ

}

=

∮

∂Ω

dΣ nµ
∂L

∂(∂µφa)
δφa +

∫

Ω

dx

{
∂L
∂φa
− ∂

∂xµ

(
∂L

∂(∂µφa)

)}
δφa , (7.118)

where ∂Ω is the (n− 1)-dimensional boundary of Ω, dΣ is the differential surface area, and

nµ is the unit normal. If we demand ∂L/∂(∂µφa)
∣∣
∂Ω

= 0 of δφa
∣∣
∂Ω

= 0, the surface term
vanishes, and we conclude

δS

δφa(x)
=

∂L
∂φa
− ∂

∂xµ

(
∂L

∂(∂µφa)

)
. (7.119)

As an example, consider the case of a stretched string of linear mass density µ and tension
τ . The action is a functional of the height y(x, t), where the coordinate along the string, x,
and time, t, are the two independent variables. The Lagrangian density is

L = 1
2µ

(
∂y

∂t

)2

− 1
2τ

(
∂y

∂x

)2

, (7.120)

whence the Euler-Lagrange equations are

0 =
δS

δy(x, t)
= − ∂

∂x

(
∂L
∂y′

)
− ∂

∂t

(
∂L
∂ẏ

)

= τ
∂2y

∂x2
− µ ∂

2y

∂t2
, (7.121)

where y′ = ∂y
∂x and ẏ = ∂y

∂t . Thus, µÿ = τy′′, which is the Helmholtz equation. We’ve

assumed boundary conditions where δy(xa, t) = δy(xb, t) = δy(x, ta) = δy(x, tb) = 0.

The Lagrangian density for an electromagnetic field with sources is

L = − 1
16π Fµν F

µν − 1
c jµA

µ . (7.122)

The equations of motion are then

∂L
∂Aµ

− ∂

∂xν

(
∂L

∂(∂µAν)

)
= 0 ⇒ ∂µ F

µν =
4π

c
jν , (7.123)

which are Maxwell’s equations.

Recall the result of Noether’s theorem for mechanical systems:

d

dt

(
∂L

∂q̇σ

∂q̃σ
∂ζ

)

ζ=0

= 0 , (7.124)
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where q̃σ = q̃σ(q, ζ) is a one-parameter (ζ) family of transformations of the generalized
coordinates which leaves L invariant. We generalize to field theory by replacing

qσ(t) −→ φa(x, t) , (7.125)

where {φa(x, t)} are a set of fields, which are functions of the independent variables {x, y, z, t}.
We will adopt covariant relativistic notation and write for four-vector xµ = (ct, x, y, z). The
generalization of dΛ/dt = 0 is

∂

∂xµ

(
∂L

∂ (∂µφa)

∂φ̃a
∂ζ

)

ζ=0

= 0 , (7.126)

where there is an implied sum on both µ and a. We can write this as ∂µ J
µ = 0, where

Jµ ≡ ∂L
∂ (∂µφa)

∂φ̃a
∂ζ

∣∣∣∣∣
ζ=0

. (7.127)

We call Λ = J0/c the total charge. If we assume J = 0 at the spatial boundaries of our
system, then integrating the conservation law ∂µ J

µ over the spatial region Ω gives

dΛ

dt
=

∫

Ω

d3x ∂0 J
0 = −

∫

Ω

d3x∇ · J = −
∮

∂Ω

dΣ n̂ · J = 0 , (7.128)

assuming J = 0 at the boundary ∂Ω.

As an example, consider the case of a complex scalar field, with Lagrangian density4

L(ψ,ψ∗, ∂µψ, ∂µψ
∗) = 1

2K (∂µψ
∗)(∂µψ) − U

(
ψ∗ψ

)
. (7.129)

This is invariant under the transformation ψ → eiζ ψ, ψ∗ → e−iζ ψ∗. Thus,

∂ψ̃

∂ζ
= i eiζ ψ ,

∂ψ̃∗

∂ζ
= −i e−iζ ψ∗ , (7.130)

and, summing over both ψ and ψ∗ fields, we have

Jµ =
∂L

∂ (∂µψ)
· (iψ) +

∂L
∂ (∂µψ∗)

· (−iψ∗)

=
K

2i

(
ψ∗∂µψ − ψ ∂µψ∗) . (7.131)

The potential, which depends on |ψ|2, is independent of ζ. Hence, this form of conserved
4-current is valid for an entire class of potentials.

4We raise and lower indices using the Minkowski metric gµν = diag (+,−,−,−).
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7.6.1 Gross-Pitaevskii model

As one final example of a field theory, consider the Gross-Pitaevskii model, with

L = i~ψ∗ ∂ψ
∂t
− ~

2

2m
∇ψ∗ ·∇ψ − g

(
|ψ|2 − n0

)2
. (7.132)

This describes a Bose fluid with repulsive short-ranged interactions. Here ψ(x, t) is again
a complex scalar field, and ψ∗ is its complex conjugate. Using the Leibniz rule, we have

δS[ψ∗, ψ] = S[ψ∗ + δψ∗, ψ + δψ]

=

∫
dt

∫
ddx

{
i~ψ∗ ∂δψ

∂t
+ i~ δψ∗ ∂ψ

∂t
− ~

2

2m
∇ψ∗ ·∇δψ − ~

2

2m
∇δψ∗ ·∇ψ

− 2g
(
|ψ|2 − n0

)
(ψ∗δψ + ψδψ∗)

}

=

∫
dt

∫
ddx

{[
− i~ ∂ψ

∗

∂t
+

~
2

2m
∇2ψ∗ − 2g

(
|ψ|2 − n0

)
ψ∗
]
δψ

+

[
i~
∂ψ

∂t
+

~
2

2m
∇2ψ − 2g

(
|ψ|2 − n0

)
ψ

]
δψ∗

}
, (7.133)

where we have integrated by parts where necessary and discarded the boundary terms.
Extremizing S[ψ∗, ψ] therefore results in the nonlinear Schrödinger equation (NLSE),

i~
∂ψ

∂t
= − ~

2

2m
∇2ψ + 2g

(
|ψ|2 − n0

)
ψ (7.134)

as well as its complex conjugate,

−i~ ∂ψ
∗

∂t
= − ~

2

2m
∇2ψ∗ + 2g

(
|ψ|2 − n0

)
ψ∗ . (7.135)

Note that these equations are indeed the Euler-Lagrange equations:

δS

δψ
=
∂L
∂ψ
− ∂

∂xµ

(
∂L
∂ ∂µψ

)
(7.136)

δS

δψ∗ =
∂L
∂ψ∗ −

∂

∂xµ

(
∂L

∂ ∂µψ∗

)
, (7.137)

with xµ = (t,x)5 Plugging in

∂L
∂ψ

= −2g
(
|ψ|2 − n0

)
ψ∗ ,

∂L
∂ ∂tψ

= i~ψ∗ ,
∂L
∂∇ψ

= − ~
2

2m
∇ψ∗ (7.138)

and

∂L
∂ψ∗ = i~ψ − 2g

(
|ψ|2 − n0

)
ψ ,

∂L
∂ ∂tψ∗ = 0 ,

∂L
∂∇ψ∗ = − ~

2

2m
∇ψ , (7.139)

5In the nonrelativistic case, there is no utility in defining x0 = ct, so we simply define x0 = t.



7.6. FIELD THEORY: SYSTEMS WITH SEVERAL INDEPENDENT VARIABLES 115

we recover the NLSE and its conjugate.

The Gross-Pitaevskii model also possesses a U(1) invariance, under

ψ(x, t)→ ψ̃(x, t) = eiζ ψ(x, t) , ψ∗(x, t)→ ψ̃∗(x, t) = e−iζ ψ∗(x, t) . (7.140)

Thus, the conserved Noether current is then

Jµ =
∂L
∂ ∂µψ

∂ψ̃

∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂ ∂µψ∗
∂ψ̃∗

∂ζ

∣∣∣∣∣
ζ=0

J0 = −~ |ψ|2 (7.141)

J = − ~
2

2im

(
ψ∗

∇ψ − ψ∇ψ∗) . (7.142)

Dividing out by ~, taking J0 ≡ −~ρ and J ≡ −~j, we obtain the continuity equation,

∂ρ

∂t
+ ∇ · j = 0 , (7.143)

where

ρ = |ψ|2 , j =
~

2im

(
ψ∗

∇ψ − ψ∇ψ∗) . (7.144)

are the particle density and the particle current, respectively.
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Chapter 8

Constraints

A mechanical system of N point particles in d dimensions possesses n = dN degrees of free-
dom1. To specify these degrees of freedom, we can choose any independent set of generalized
coordinates {q1, . . . , qK}. Oftentimes, however, not all n coordinates are independent.

Consider, for example, the situation in Fig. 8.1, where a cylinder of radius a rolls over a half-
cylinder of radius R. If there is no slippage, then the angles θ1 and θ2 are not independent,
and they obey the equation of constraint ,

Rθ1 = a (θ2 − θ1) . (8.1)

In this case, we can easily solve the constraint equation and substitute θ2 =
(
1 + R

a

)
θ1. In

other cases, though, the equation of constraint might not be so easily solved (e.g. it may be
nonlinear). How then do we proceed?

8.1 Constraints and Variational Calculus

Before addressing the subject of constrained dynamical systems, let’s consider the issue of
constraints in the broader context of variational calculus. Suppose we have a functional

F [y(x)] =

xb∫

xa

dxL(y, y′, x) , (8.2)

which we want to extremize subject to some constraints. Here y may stand for a set of
functions {yσ(x)}. There are two classes of constraints we will consider:

1For N rigid bodies, the number of degrees of freedom is n′ = 1
2
d(d + 1)N , corresponding to d center-

of-mass coordinates and 1
2
d(d − 1) angles of orientation for each particle. The dimension of the group of

rotations in d dimensions is 1
2
d(d − 1), corresponding to the number of parameters in a general rank-d

orthogonal matrix (i.e. an element of the group O(d)).

117
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Figure 8.1: A cylinder of radius a rolls along a half-cylinder of radius R. When there is no
slippage, the angles θ1 and θ2 obey the constraint equation Rθ1 = a(θ2 − θ1).

1. Integral constraints: These are of the form
xb∫

xa

dxNj(y, y
′, x) = Cj , (8.3)

where j labels the constraint.

2. Holonomic constraints: These are of the form

Gj(y, x) = 0 . (8.4)

The cylinders system in Fig. 8.1 provides an example of a holonomic constraint. There,
G(θ, t) = Rθ1 − a (θ2 − θ1) = 0. As an example of a problem with an integral constraint,
suppose we want to know the shape of a hanging rope of fixed length C. This means we
minimize the rope’s potential energy,

U [y(x)] = λg

xb∫

xa

ds y(x) = λg

xb∫

xa

dx y

√
1 + y′2 , (8.5)

where λ is the linear mass density of the rope, subject to the fixed-length constraint

C =

xb∫

xa

ds =

xb∫

xa

dx

√
1 + y′2 . (8.6)

Note ds =
√
dx2 + dy2 is the differential element of arc length along the rope. To solve

problems like these, we turn to Lagrange’s method of undetermined multipliers.
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8.2 Constrained Extremization of Functions

Given F (x1, . . . , xn) to be extremized subject to k constraints of the formGj(x1, . . . , xn) = 0
where j = 1, . . . , k, construct

F ∗(x1, . . . , xn;λ1, . . . , λk
)
≡ F (x1, . . . , xn) +

k∑

j=1

λj Gj(x1, . . . , xn) (8.7)

which is a function of the (n + k) variables
{
x1, . . . , xn;λ1, . . . , λk

}
. Now freely extremize

the extended function F ∗:

dF ∗ =

n∑

σ=1

∂F ∗

∂xσ
dxσ +

k∑

j=1

∂F ∗

∂λj
dλj (8.8)

=
n∑

σ=1


 ∂F

∂xσ
+

k∑

j=1

λj
∂Gj
∂xσ


 dxσ +

k∑

j=1

Gj dλj = 0 (8.9)

This results in the (n+ k) equations

∂F

∂xσ
+

k∑

j=1

λj
∂Gj
∂xσ

= 0 (σ = 1, . . . , n) (8.10)

Gj = 0 (j = 1, . . . , k) . (8.11)

The interpretation of all this is as follows. The n equations in 8.10 can be written in vector
form as

∇F +

k∑

j=1

λj ∇Gj = 0 . (8.12)

This says that the (n-component) vector ∇F is linearly dependent upon the k vectors

∇Gj . Thus, any movement in the direction of ∇F must necessarily entail movement along

one or more of the directions ∇Gj . This would require violating the constraints, since

movement along ∇Gj takes us off the level set Gj = 0. Were ∇F linearly independent of

the set {∇Gj}, this would mean that we could find a differential displacement dx which

has finite overlap with ∇F but zero overlap with each ∇Gj . Thus x+dx would still satisfy

Gj(x+ dx) = 0, but F would change by the finite amount dF = ∇F (x) · dx.

8.3 Extremization of Functionals : Integral Constraints

Given a functional

F
[
{yσ(x)}

]
=

xb∫

xa

dxL
(
{yσ}, {y′σ}, x

)
(σ = 1, . . . , n) (8.13)
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subject to boundary conditions δyσ(xa) = δyσ(xb) = 0 and k constraints of the form

xb∫

xa

dxNl

(
{yσ}, {y′σ}, x

)
= Cl (l = 1, . . . , k) , (8.14)

construct the extended functional

F ∗[{yσ(x)}; {λj}
]
≡

xb∫

xa

dx

{
L
(
{yσ}, {y′σ}, x

)
+

k∑

l=1

λlNl

(
{yσ}, {y′σ}, x

)}
−

k∑

l=1

λl Cl (8.15)

and freely extremize over {y1, . . . , yn;λ1, . . . , λk}. This results in (n+ k) equations

∂L

∂yσ
− d

dx

(
∂L

∂y′σ

)
+

k∑

l=1

λl

{
∂Nl

∂yσ
− d

dx

(
∂Nl

∂y′σ

)}
= 0 (σ = 1, . . . , n) (8.16)

xb∫

xa

dxNl

(
{yσ}, {y′σ}, x

)
= Cl (l = 1, . . . , k) . (8.17)

8.4 Extremization of Functionals : Holonomic Constraints

Given a functional

F
[
{yσ(x)}

]
=

xb∫

xa

dxL
(
{yσ}, {y′σ}, x

)
(σ = 1, . . . , n) (8.18)

subject to boundary conditions δyσ(xa) = δyσ(xb) = 0 and k constraints of the form

Gj
(
{yσ(x)}, x

)
= 0 (j = 1, . . . , k) , (8.19)

construct the extended functional

F ∗[{yσ(x)}; {λj(x)}
]
≡

xb∫

xa

dx

{
L
(
{yσ}, {y′σ}, x

)
+

k∑

j=1

λj Gj
(
{yσ}

)}
(8.20)

and freely extremize over
{
y1, . . . , yn;λ1, . . . , λk

}
:

δF ∗ =

xb∫

xa

dx

{
n∑

σ=1

(
∂L

∂yσ
− d

dx

(
∂L

∂y′σ

)
+

k∑

j=1

λj
∂Gj
∂yσ

)
δyσ +

k∑

j=1

Gj δλj

}
= 0 , (8.21)

resulting in the (n+ k) equations

d

dx

(
∂L

∂y′σ

)
− ∂L

∂yσ
=

k∑

j=1

λj
∂Gj
∂yσ

(σ = 1, . . . , n) (8.22)

Gj
(
{yσ}, x

)
= 0 (j = 1, . . . , k) . (8.23)
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8.4.1 Examples of extremization with constraints

Volume of a cylinder : As a warm-up problem, let’s maximize the volume V = πa2h of a
cylinder of radius a and height h, subject to the constraint

G(a, h) = 2πa+
h2

b
− ℓ = 0 . (8.24)

We therefore define
V ∗(a, h, λ) ≡ V (a, h) + λG(a, h) , (8.25)

and set

∂V ∗

∂a
= 2πah+ 2πλ = 0 (8.26)

∂V ∗

∂h
= πa2 + 2λ

h

b
= 0 (8.27)

∂V ∗

∂λ
= 2πa+

h2

b
− ℓ = 0 . (8.28)

Solving these three equations simultaneously gives

a =
2ℓ

5π
, h =

√
bℓ

5
, λ =

2π

53/2
b1/2 ℓ3/2 , V =

4

55/2 π
ℓ5/2 b1/2 . (8.29)

Hanging rope : We minimize the energy functional

E
[
y(x)

]
= µg

x2∫

x1

dx y

√
1 + y′2 , (8.30)

where µ is the linear mass density, subject to the constraint of fixed total length,

C
[
y(x)

]
=

x2∫

x1

dx

√
1 + y′2 . (8.31)

Thus,

E∗[y(x), λ
]

= E
[
y(x)

]
+ λC

[
y(x)

]
=

x2∫

x1

dxL∗(y, y′, x) , (8.32)

with

L∗(y, y′, x) = (µgy + λ)

√
1 + y′2 . (8.33)

Since ∂L∗

∂x = 0 we have that

J = y′
∂L∗

∂y′
− L∗ = − µgy + λ√

1 + y′2
(8.34)
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is constant. Thus,
dy

dx
= ±J −1

√
(µgy + λ)2 − J 2 , (8.35)

with solution

y(x) = − λ

µg
+
J
µg

cosh
(µg
J (x− a)

)
. (8.36)

Here, J , a, and λ are constants to be determined by demanding y(xi) = yi (i = 1, 2), and
that the total length of the rope is C.

Geodesic on a curved surface : Consider next the problem of a geodesic on a curved surface.
Let the equation for the surface be

G(x, y, z) = 0 . (8.37)

We wish to extremize the distance,

D =

b∫

a

ds =

b∫

a

√
dx2 + dy2 + dz2 . (8.38)

We introduce a parameter t defined on the unit interval: t ∈ [0, 1], such that x(0) = xa,

x(1) = xb, etc. Then D may be regarded as a functional, viz.

D
[
x(t), y(t), z(t)

]
=

1∫

0

dt
√
ẋ2 + ẏ2 + ż2 . (8.39)

We impose the constraint by forming the extended functional, D∗:

D∗[x(t), y(t), z(t), λ(t)
]
≡

1∫

0

dt

{√
ẋ2 + ẏ2 + ż2 + λG(x, y, z)

}
, (8.40)

and we demand that the first functional derivatives of D∗ vanish:

δD∗

δx(t)
= − d

dt

(
ẋ√

ẋ2 + ẏ2 + ż2

)
+ λ

∂G

∂x
= 0 (8.41)

δD∗

δy(t)
= − d

dt

(
ẏ√

ẋ2 + ẏ2 + ż2

)
+ λ

∂G

∂y
= 0 (8.42)

δD∗

δz(t)
= − d

dt

(
ż√

ẋ2 + ẏ2 + ż2

)
+ λ

∂G

∂z
= 0 (8.43)

δD∗

δλ(t)
= G(x, y, z) = 0 . (8.44)

Thus,

λ(t) =
vẍ− ẋv̇
v2 ∂xG

=
vÿ − ẏv̇
v2 ∂yG

=
vz̈ − żv̇
v2 ∂zG

, (8.45)

with v =
√
ẋ2 + ẏ2 + ż2 and ∂x ≡ ∂

∂x , etc. These three equations are supplemented by
G(x, y, z) = 0, which is the fourth.
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8.5 Application to Mechanics

Let us write our system of constraints in the differential form

n∑

σ=1

gjσ(q, t) dqσ + hj(q, t)dt = 0 (j = 1, . . . , k) . (8.46)

If the partial derivatives satisfy

∂gjσ
∂qσ′

=
∂gjσ′

∂qσ
,

∂gjσ
∂t

=
∂hj
∂qσ

, (8.47)

then the differential can be integrated to give dG(q, t) = 0, where

gjσ =
∂Gj
∂qσ

, hj =
∂Gj
∂t

. (8.48)

The action functional is

S[{qσ(t)}] =

tb∫

ta

dtL
(
{qσ}, {q̇σ}, t

)
(σ = 1, . . . , n) , (8.49)

subject to boundary conditions δqσ(ta) = δqσ(tb) = 0. The first variation of S is given by

δS =

tb∫

ta

dt

n∑

σ=1

{
∂L

∂qσ
− d

dt

(
∂L

∂q̇σ

)}
δqσ . (8.50)

Since the {qσ(t)} are no longer independent, we cannot infer that the term in brackets
vanishes for each σ. What are the constraints on the variations δqσ(t)? The constraints are
expressed in terms of virtual displacements which take no time: δt = 0. Thus,

n∑

σ=1

gjσ(q, t) δqσ(t) = 0 , (8.51)

where j = 1, . . . , k is the constraint index. We may now relax the constraint by introducing k
undetermined functions λj(t), by adding integrals of the above equations with undetermined
coefficient functions to δS:

n∑

σ=1

{
∂L

∂qσ
− d

dt

(
∂L

∂q̇σ

)
+

k∑

j=1

λj(t) gjσ(q, t)

}
δqσ(t) = 0 . (8.52)

Now we can demand that the term in brackets vanish for all σ. Thus, we obtain a set of
(n+ k) equations,

d

dt

(
∂L

∂q̇σ

)
− ∂L

∂qσ
=

k∑

j=1

λj(t) gjσ(q, t) ≡ Qσ (8.53)

gjσ(q, t) q̇σ + hj(q, t) = 0 , (8.54)
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in (n + k) unknowns
{
q1, . . . , qn, λ1, . . . , λk

}
. Here, Qσ is the force of constraint conjugate

to the generalized coordinate qσ. Thus, with

pσ =
∂L

∂q̇σ
, Fσ =

∂L

∂qσ
, Qσ =

k∑

j=1

λj gjσ , (8.55)

we write Newton’s second law as
ṗσ = Fσ +Qσ . (8.56)

Note that we can write
δS

δq(t)
=
∂L

∂q
− d

dt

(
∂L

∂q̇

)
(8.57)

and that the instantaneous constraints may be written

gj · δq = 0 (j = 1, . . . , k) . (8.58)

Thus, by demanding

δS

δq(t)
+

k∑

j=1

λj gj = 0 (8.59)

we require that the functional derivative be linearly dependent on the k vectors gj.

8.5.1 Constraints and conservation laws

We have seen how invariance of the Lagrangian with respect to a one-parameter family of
coordinate transformations results in an associated conserved quantity Λ, and how a lack of
explicit time dependence in L results in the conservation of the Hamiltonian H. In deriving
both these results, however, we used the equations of motion ṗσ = Fσ . What happens when
we have constraints, in which case ṗσ = Fσ +Qσ?

Let’s begin with the Hamiltonian. We have H = q̇σ pσ − L, hence

dH

dt
=

(
pσ −

∂L

∂q̇σ

)
q̈σ +

(
ṗσ −

∂L

∂qσ

)
q̇σ −

∂L

∂t

= Qσ q̇σ −
∂L

∂t
. (8.60)

We now use
Qσ q̇σ = λj gjσ q̇σ = −λj hj (8.61)

to obtain
dH

dt
= −λj hj −

∂L

∂t
. (8.62)

We therefore conclude that in a system with constraints of the form gjσ q̇σ + hj = 0, the

Hamiltonian is conserved if each hj = 0 and if L is not explicitly dependent on time. In
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the case of holonomic constraints, hj =
∂Gj

∂t , so H is conserved if neither L nor any of the

constraints Gj is explicitly time-dependent.

Next, let us rederive Noether’s theorem when constraints are present. We assume a one-
parameter family of transformations qσ → q̃σ(ζ) leaves L invariant. Then

0 =
dL

dζ
=

∂L

∂q̃σ

∂q̃σ
∂ζ

+
∂L

∂ ˙̃qσ

∂ ˙̃qσ
∂ζ

=
(
˙̃pσ − Q̃σ

) ∂q̃σ
∂ζ

+ p̃σ
d

dt

(
∂q̃σ
∂ζ

)

=
d

dt

(
p̃σ
∂q̃σ
∂ζ

)
− λj g̃jσ

∂q̃σ
∂ζ

. (8.63)

Now let us write the constraints in differential form as

g̃jσ dq̃σ + h̃j dt+ k̃j dζ = 0 . (8.64)

We now have
dΛ

dt
= λj k̃j , (8.65)

which says that if the constraints are independent of ζ then Λ is conserved. For holonomic
constraints, this means that

Gj
(
q̃(ζ), t

)
= 0 ⇒ k̃j =

∂Gj
∂ζ

= 0 , (8.66)

i.e. Gj(q̃, t) has no explicit ζ dependence.

8.6 Worked Examples

Here we consider several example problems of constrained dynamics, and work each out in
full detail.

8.6.1 One cylinder rolling off another

As an example of the constraint formalism, consider the system in Fig. 8.1, where a cylinder
of radius a rolls atop a cylinder of radius R. We have two constraints:

G1(r, θ1, θ2) = r −R− a = 0 (cylinders in contact) (8.67)

G2(r, θ1, θ2) = Rθ1 − a (θ2 − θ1) = 0 (no slipping) , (8.68)

from which we obtain the gjσ:

gjσ =

(
1 0 0
0 R+ a −a

)
, (8.69)
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which is to say

∂G1

∂r
= 1

∂G1

∂θ1
= 0

∂G1

∂θ2
= 0 (8.70)

∂G2

∂r
= 0

∂G2

∂θ1
= R+ a

∂G2

∂θ2
= −a . (8.71)

The Lagrangian is

L = T − U = 1
2M
(
ṙ2 + r2 θ̇2

1

)
+ 1

2I θ̇
2
2 −Mgr cos θ1 , (8.72)

where M and I are the mass and rotational inertia of the rolling cylinder, respectively.
Note that the kinetic energy is a sum of center-of-mass translation Ttr = 1

2M
(
ṙ2 + r2 θ̇2

1

)

and rotation about the center-of-mass, Trot = 1
2I θ̇

2
2. The equations of motion are

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= Mr̈ −Mr θ̇2

1 +Mg cos θ1 = λ1 ≡ Qr (8.73)

d

dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1
= Mr2θ̈1 + 2Mrṙ θ̇1 −Mgr sin θ1 = (R+ a)λ2 ≡ Qθ1 (8.74)

d

dt

(
∂L

∂θ̇2

)
− ∂L

∂θ2
= Iθ̈2 = −aλ2 ≡ Qθ2 . (8.75)

To these three equations we add the two constraints, resulting in five equations in the five
unknowns

{
r, θ1, θ2, λ1, λ2

}
.

We solve by first implementing the constraints, which give r = (R + a) a constant (i.e.
ṙ = 0), and θ̇2 =

(
1 + R

a

)
θ̇1. Substituting these into the above equations gives

−M(R+ a) θ̇2
1 +Mg cos θ1 = λ1 (8.76)

M(R + a)2θ̈1 −Mg(R + a) sin θ1 = (R + a)λ2 (8.77)

I

(
R+ a

a

)
θ̈1 = −aλ2 . (8.78)

From eqn. 8.78 we obtain

λ2 = −I
a
θ̈2 = −R+ a

a2
I θ̈1 , (8.79)

which we substitute into eqn. 8.77 to obtain
(
M +

I

a2

)
(R+ a)2θ̈1 −Mg(R + a) sin θ1 = 0 . (8.80)

Multiplying by θ̇1, we obtain an exact differential, which may be integrated to yield

1
2M

(
1 +

I

Ma2

)
θ̇2
1 +

Mg

R+ a
cos θ1 =

Mg

R+ a
cos θ◦1 . (8.81)
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Figure 8.2: Frictionless motion under gravity along a curved surface. The skier flies off the
surface when the normal force vanishes.

Here, we have assumed that θ̇1 = 0 when θ1 = θ◦1, i.e. the rolling cylinder is released from
rest at θ1 = θ◦1. Finally, inserting this result into eqn. 8.76, we obtain the radial force of
constraint,

Qr =
Mg

1 + α

{
(3 + α) cos θ1 − 2 cos θ◦1

}
, (8.82)

where α = I/Ma2 is a dimensionless parameter (0 ≤ α ≤ 1). This is the radial component

of the normal force between the two cylinders. When Qr vanishes, the cylinders lose contact
– the rolling cylinder flies off. Clearly this occurs at an angle θ1 = θ∗1, where

θ∗1 = cos−1

(
2 cos θ◦1
3 + α

)
. (8.83)

The detachment angle θ∗1 is an increasing function of α, which means that larger I delays
detachment. This makes good sense, since when I is larger the gain in kinetic energy is
split between translational and rotational motion of the rolling cylinder.

8.6.2 Frictionless motion along a curve

Consider the situation in Fig. 8.2 where a skier moves frictionlessly under the influence of
gravity along a general curve y = h(x). The Lagrangian for this problem is

L = 1
2m(ẋ2 + ẏ2)−mgy (8.84)

and the (holonomic) constraint is

G(x, y) = y − h(x) = 0 . (8.85)

Accordingly, the Euler-Lagrange equations are

d

dt

(
∂L

∂q̇σ

)
− ∂L

∂qσ
= λ

∂G

∂qσ
, (8.86)
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where q1 = x and q2 = y. Thus, we obtain

mẍ = −λh′(x) = Qx (8.87)

mÿ +mg = λ = Qy . (8.88)

We eliminate y in favor of x by invoking the constraint. Since we need ÿ, we must differen-
tiate the constraint, which gives

ẏ = h′(x) ẋ , ÿ = h′(x) ẍ+ h′′(x) ẋ2 . (8.89)

Using the second Euler-Lagrange equation, we then obtain

λ

m
= g + h′(x) ẍ+ h′′(x) ẋ2 . (8.90)

Finally, we substitute this into the first E-L equation to obtain an equation for x alone:

(
1 +

[
h′(x)

]2)
ẍ+ h′(x)h′′(x) ẋ2 + g h′(x) = 0 . (8.91)

Had we started by eliminating y = h(x) at the outset, writing

L(x, ẋ) = 1
2m
(
1 +

[
h′(x)

]2)
ẋ2 −mg h(x) , (8.92)

we would also have obtained this equation of motion.

The skier flies off the curve when the vertical force of constraint Qy = λ starts to become
negative, because the curve can only supply a positive normal force. Suppose the skier
starts from rest at a height y0. We may then determine the point x at which the skier
detaches from the curve by setting λ(x) = 0. To do so, we must eliminate ẋ and ẍ in terms
of x. For ẍ, we may use the equation of motion to write

ẍ = −
(
gh′ + h′ h′′ ẋ2

1 + h′2

)
, (8.93)

which allows us to write

λ = m

(
g + h′′ ẋ2

1 + h′2

)
. (8.94)

To eliminate ẋ, we use conservation of energy,

E = mgy0 = 1
2m
(
1 + h′2

)
ẋ2 +mgh , (8.95)

which fixes

ẋ2 = 2g

(
y0 − h
1 + h′2

)
. (8.96)

Putting it all together, we have

λ(x) =
mg

(
1 + h′2

)2
{
1 + h′2 + 2(y0 − h)h′′

}
. (8.97)
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Figure 8.3: Finding the local radius of curvature: z = η2/2R.

The skier detaches from the curve when λ(x) = 0, i.e. when

1 + h′2 + 2(y0 − h)h′′ = 0 . (8.98)

There is a somewhat easier way of arriving at the same answer. This is to note that the
skier must fly off when the local centripetal force equals the gravitational force normal to
the curve, i.e.

mv2(x)

R(x)
= mg cos θ(x) , (8.99)

where R(x) is the local radius of curvature. Now tan θ = h′, so cos θ =
(
1 + h′2

)−1/2
. The

square of the velocity is v2 = ẋ2 + ẏ2 =
(
1 + h′2

)
ẋ2. What is the local radius of curvature

R(x)? This can be determined from the following argument, and from the sketch in Fig.
8.3. Writing x = x∗ + ǫ, we have

y = h(x∗) + h′(x∗) ǫ+ 1
2h

′′(x∗) ǫ2 + . . . . (8.100)

We now drop a perpendicular segment of length z from the point (x, y) to the line which is
tangent to the curve at

(
x∗, h(x∗)

)
. According to Fig. 8.3, this means

(
ǫ
y

)
= η · 1√

1+h′2

(
1
h′

)
− z · 1√

1+h′2

(
−h′
1

)
. (8.101)
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Thus, we have

y = h′ ǫ+ 1
2h

′′ ǫ2

= h′
(
η + z h′√
1 + h′2

)
+ 1

2h
′′
(
η + z h′√
1 + h′2

)2

=
η h′ + z h′2√

1 + h′2
+

h′′ η2

2
(
1 + h′2

) +O(ηz)

=
η h′ − z√
1 + h′2

, (8.102)

from which we obtain

z = − h′′ η2

2
(
1 + h′2

)3/2 +O(η3) (8.103)

and therefore

R(x) = − 1

h′′(x)
·
(
1 +

[
h′(x)

]2)3/2
. (8.104)

Thus, the detachment condition,

mv2

R
= − mh′′ ẋ2

√
1 + h′2

=
mg√
1 + h′2

= mg cos θ (8.105)

reproduces the result from eqn. 8.94.

8.6.3 Disk rolling down an inclined plane

A hoop of mass m and radius R rolls without slipping down an inclined plane. The inclined
plane has opening angle α and mass M , and itself slides frictionlessly along a horizontal
surface. Find the motion of the system.

Figure 8.4: A hoop rolling down an inclined plane lying on a frictionless surface.



8.6. WORKED EXAMPLES 131

Solution : Referring to the sketch in Fig. 8.4, the center of the hoop is located at

x = X + s cosα− a sinα

y = s sinα+ a cosα ,

where X is the location of the lower left corner of the wedge, and s is the distance
along the wedge to the bottom of the hoop. If the hoop rotates through an angle θ,
the no-slip condition is a θ̇ + ṡ = 0. Thus,

L = 1
2MẊ2 + 1

2m
(
ẋ2 + ẏ2

)
+ 1

2Iθ̇
2 −mgy

= 1
2

(
m+

I

a2

)
ṡ2 + 1

2 (M +m)Ẋ2 +m cosα Ẋ ṡ−mgs sinα−mga cosα .

Since X is cyclic in L, the momentum

PX = (M +m)Ẋ +m cosα ṡ ,

is preserved: ṖX = 0. The second equation of motion, corresponding to the generalized
coordinate s, is (

1 +
I

ma2

)
s̈+ cosα Ẍ = −g sinα .

Using conservation of PX , we eliminate s̈ in favor of Ẍ, and immediately obtain

Ẍ =
g sinα cosα(

1 + M
m

)(
1 + I

ma2

)
− cos2 α

≡ aX .

The result

s̈ = −
g
(
1 + M

m

)
sinα

(
1 + M

m

)(
1 + I

ma2

)
− cos2 α

≡ as

follows immediately. Thus,

X(t) = X(0) + Ẋ(0) t + 1
2aXt

2

s(t) = s(0) + ṡ(0) t+ 1
2ast

2 .

Note that as < 0 while aX > 0, i.e. the hoop rolls down and to the left as the wedge
slides to the right. Note that I = ma2 for a hoop; we’ve computed the answer here
for general I.

8.6.4 Pendulum with nonrigid support

A particle of massm is suspended from a flexible string of length ℓ in a uniform gravitational
field. While hanging motionless in equilibrium, it is struck a horizontal blow resulting in
an initial angular velocity ω0. Treating the system as one with two degrees of freedom and
a constraint, answer the following:
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(a) Compute the Lagrangian, the equation of constraint, and the equations of motion.

Solution : The Lagrangian is

L = 1
2m
(
ṙ2 + r2 θ̇2

)
+mgr cos θ .

The constraint is r = ℓ. The equations of motion are

mr̈ −mr θ̇2 −mg cos θ = λ

mr2 θ̈ + 2mr ṙ θ̇ −mg sin θ = 0 .

(b) Compute the tension in the string as a function of angle θ.

Solution : Energy is conserved, hence

1
2mℓ

2 θ̇2 −mgℓ cos θ = 1
2mℓ

2 θ̇2
0 −mgℓ cos θ0 .

We take θ0 = 0 and θ̇0 = ω0. Thus,

θ̇2 = ω2
0 − 2Ω2

(
1− cos θ

)
,

with Ω =
√
g/ℓ. Substituting this into the equation for λ, we obtain

λ = mg

{
2− 3 cos θ − ω2

0

Ω2

}
.

(c) Show that if ω2
0 < 2g/ℓ then the particle’s motion is confined below the horizontal

and that the tension in the string is always positive (defined such that positive means
exerting a pulling force and negative means exerting a pushing force). Note that the
difference between a string and a rigid rod is that the string can only pull but the rod
can pull or push. Thus, the string tension must always be positive or else the string

goes “slack”.

Solution : Since θ̇2 ≥ 0, we must have

ω2
0

2Ω2
≥ 1− cos θ .

The condition for slackness is λ = 0, or

ω2
0

2Ω2
= 1− 3

2 cos θ .

Thus, if ω2
0 < 2Ω2, we have

1 >
ω2

0

2Ω2
> 1− cos θ > 1− 3

2 cos θ ,

and the string never goes slack. Note the last equality follows from cos θ > 0. The
string rises to a maximum angle

θmax = cos−1
(
1− ω2

0

2Ω2

)
.
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(d) Show that if 2g/ℓ < ω2
0 < 5g/ℓ the particle rises above the horizontal and the string

becomes slack (the tension vanishes) at an angle θ∗. Compute θ∗.

Solution : When ω2 > 2Ω2, the string rises above the horizontal and goes slack at an
angle

θ∗ = cos−1
(

2
3 −

ω2
0

3Ω2

)
.

This solution craps out when the string is still taut at θ = π, which means ω2
0 = 5Ω2.

(e) Show that if ω2
0 > 5g/ℓ the tension is always positive and the particle executes circular

motion.

Solution : For ω2
0 > 5Ω2, the string never goes slack. Furthermore, θ̇ never vanishes.

Therefore, the pendulum undergoes circular motion, albeit not with constant angular
velocity.

8.6.5 Falling ladder

A uniform ladder of length ℓ and mass m has one end on a smooth horizontal floor and the
other end against a smooth vertical wall. The ladder is initially at rest and makes an angle
θ0 with respect to the horizontal.

Figure 8.5: A ladder sliding down a wall and across a floor.

(a) Make a convenient choice of generalized coordinates and find the Lagrangian.

Solution : I choose as generalized coordinates the Cartesian coordinates (x, y) of the
ladder’s center of mass, and the angle θ it makes with respect to the floor. The
Lagrangian is then

L = 1
2 m (ẋ2 + ẏ2) + 1

2 I θ̇
2 +mgy .
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There are two constraints: one enforcing contact along the wall, and the other enforc-
ing contact along the floor. These are written

G1(x, y, θ) = x− 1
2 ℓ cos θ = 0

G2(x, y, θ) = y − 1
2 ℓ sin θ = 0 .

(b) Prove that the ladder leaves the wall when its upper end has fallen to a height 2
3L sin θ0.

The equations of motion are

d

dt

(
∂L

∂q̇σ

)
− ∂L

∂qσ
=
∑

j

λj
∂Gj
∂qσ

.

Thus, we have

mẍ = λ1 = Qx

mÿ +mg = λ2 = Qy

I θ̈ = 1
2ℓ
(
λ1 sin θ − λ2 cos θ

)
= Qθ .

We now implement the constraints to eliminate x and y in terms of θ. We have

ẋ = −1
2 ℓ sin θ θ̇ ẍ = −1

2 ℓ cos θ θ̇2 − 1
2 ℓ sin θ θ̈

ẏ = 1
2 ℓ cos θ θ̇ ÿ = −1

2 ℓ sin θ θ̇2 + 1
2 ℓ cos θ θ̈ .

We can now obtain the forces of constraint in terms of the function θ(t):

λ1 = −1
2mℓ

(
sin θ θ̈ + cos θ θ̇2

)

λ2 = +1
2mℓ

(
cos θ θ̈ − sin θ θ̇2

)
+mg .

We substitute these into the last equation of motion to obtain the result

I θ̈ = −I0 θ̈ − 1
2mgℓ cos θ ,

or
(1 + α) θ̈ = −2ω2

0 cos θ ,

with I0 = 1
4mℓ

2, α ≡ I/I0 and ω0 =
√
g/ℓ. This may be integrated once (multiply by

θ̇ to convert to a total derivative) to yield

1
2(1 + α) θ̇2 + 2ω2

0 sin θ = 2ω2
0 sin θ0 ,

which is of course a statement of energy conservation. This,

θ̇2 =
4ω2

0 (sin θ0 − sin θ)

1 + α

θ̈ = −2ω2
0 cos θ

1 + α
.
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We may now obtain λ1(θ) and λ2(θ):

λ1(θ) = − mg

1 + α

(
3 sin θ − 2 sin θ0

)
cos θ

λ2(θ) =
mg

1 + α

{
(3 sin θ − 2 sin θ0

)
sin θ + α

}
.

Demanding λ1(θ) = 0 gives the detachment angle θ = θd, where

sin θd = 2
3 sin θ0 .

Note that λ2(θd) = mgα/(1 + α) > 0, so the normal force from the floor is always

positive for θ > θd. The time to detachment is

T1(θ0) =

∫
dθ

θ̇
=

√
1 + α

2ω0

θ0∫

θd

dθ√
sin θ0 − sin θ

.

(c) Show that the subsequent motion can be reduced to quadratures (i.e. explicit inte-
grals).

Solution : After the detachment, there is no longer a constraint G1. The equations of
motion are

mẍ = 0 (conservation of x-momentum)

mÿ +mg = λ

I θ̈ = −1
2 ℓ λ cos θ ,

along with the constraint y = 1
2 ℓ sin θ. Eliminating y in favor of θ using the constraint,

the second equation yields

λ = mg − 1
2mℓ sin θ θ̇2 + 1

2mℓ cos θ θ̈ .

Plugging this into the third equation of motion, we find

I θ̈ = −2 I0 ω
2
0 cos θ + I0 sin θ cos θ θ̇2 − I0 cos2 θ θ̈ .

Multiplying by θ̇ one again obtains a total time derivative, which is equivalent to
rediscovering energy conservation:

E = 1
2

(
I + I0 cos2 θ

)
θ̇2 + 2 I0 ω

2
0 sin θ .

By continuity with the first phase of the motion, we obtain the initial conditions for
this second phase:

θ = sin−1
(

2
3 sin θ0

)

θ̇ = −2ω0

√
sin θ0

3 (1 + α)
.
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Figure 8.6: Plot of time to fall for the slipping ladder. Here x = sin θ0.

Thus,

E = 1
2

(
I + I0 − 4

9 I0 sin2 θ0
)
· 4ω

2
0 sin θ0

3 (1 + α)
+ 1

3 mgℓ sin θ0

= 2 I0 ω
2
0 ·
{

1 + 4
27

sin2 θ0
1 + α

}
sin θ0 .

(d) Find an expression for the time T (θ0) it takes the ladder to smack against the floor.
Note that, expressed in units of the time scale

√
L/g, T is a dimensionless function

of θ0. Numerically integrate this expression and plot T versus θ0.

Solution : The time from detachment to smack is

T2(θ0) =

∫
dθ

θ̇
=

1

2ω0

θd∫

0

dθ

√
1 + α cos2 θ

(
1− 4

27
sin2 θ0
1+α

)
sin θ0 − sin θ

.

The total time is then T (θ0) = T1(θ0) + T2(θ0). For a uniformly dense ladder, I =
1
12 mℓ

2 = 1
3 I0, so α = 1

3 .

(e) What is the horizontal velocity of the ladder at long times?
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Solution : From the moment of detachment, and thereafter,

ẋ = −1
2 ℓ sin θ θ̇ =

√
4 g ℓ

27 (1 + α)
sin3/2θ0 .

(f) Describe in words the motion of the ladder subsequent to it slapping against the floor.

Solution : Only a fraction of the ladder’s initial potential energy is converted into
kinetic energy of horizontal motion. The rest is converted into kinetic energy of
vertical motion and of rotation. The slapping of the ladder against the floor is an
elastic collision. After the collision, the ladder must rise again, and continue to rise
and fall ad infinitum, as it slides along with constant horizontal velocity.

8.6.6 Point mass inside rolling hoop

Consider the point mass m inside the hoop of radius R, depicted in Fig. 8.7. We choose
as generalized coordinates the Cartesian coordinates (X,Y ) of the center of the hoop, the
Cartesian coordinates (x, y) for the point mass, the angle φ through which the hoop turns,
and the angle θ which the point mass makes with respect to the vertical. These six coordi-
nates are not all independent. Indeed, there are only two independent coordinates for this
system, which can be taken to be θ and φ. Thus, there are four constraints:

X −Rφ ≡ G1 = 0 (8.106)

Y −R ≡ G2 = 0 (8.107)

x−X −R sin θ ≡ G3 = 0 (8.108)

y − Y +R cos θ ≡ G4 = 0 . (8.109)

Figure 8.7: A point mass m inside a hoop of mass M , radius R, and moment of inertia I.

The kinetic and potential energies are easily expressed in terms of the Cartesian coordinates,
aside from the energy of rotation of the hoop about its CM, which is expressed in terms of
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φ̇:

T = 1
2M(Ẋ2 + Ẏ 2) + 1

2m(ẋ2 + ẏ2) + 1
2I φ̇

2 (8.110)

U = MgY +mgy . (8.111)

The moment of inertia of the hoop about its CM is I = MR2, but we could imagine a
situation in which I were different. For example, we could instead place the point mass
inside a very short cylinder with two solid end caps, in which case I = 1

2MR2. The
Lagrangian is then

L = 1
2M(Ẋ2 + Ẏ 2) + 1

2m(ẋ2 + ẏ2) + 1
2I φ̇

2 −MgY −mgy . (8.112)

Note that L as written is completely independent of θ and θ̇!

Continuous symmetry

Note that there is an continuous symmetry to L which is satisfied by all the constraints,
under

X̃(ζ) = X + ζ Ỹ (ζ) = Y (8.113)

x̃(ζ) = x+ ζ ỹ(ζ) = y (8.114)

φ̃(ζ) = φ+
ζ

R
θ̃(ζ) = θ . (8.115)

Thus, according to Noether’s theorem, there is a conserved quantity

Λ =
∂L

∂Ẋ
+
∂L

∂ẋ
+

1

R

∂L

∂φ̇

= MẊ +mẋ+
I

R
φ̇ . (8.116)

This means Λ̇ = 0. This reflects the overall conservation of momentum in the x-direction.

Energy conservation

Since neither L nor any of the constraints are explicitly time-dependent, the Hamiltonian
is conserved. And since T is homogeneous of degree two in the generalized velocities, we
have H = E = T + U :

E = 1
2M(Ẋ2 + Ẏ 2) + 1

2m(ẋ2 + ẏ2) + 1
2I φ̇

2 +MgY +mgy . (8.117)
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Equations of motion

We have n = 6 generalized coordinates and k = 4 constraints. Thus, there are four un-
determined multipliers {λ1, λ2, λ3, λ4} used to impose the constraints. This makes for ten
unknowns:

X , Y , x , y , φ , θ , λ1 , λ2 , λ3 , λ4 . (8.118)

Accordingly, we have ten equations: six equations of motion plus the four equations of
constraint. The equations of motion are obtained from

d

dt

(
∂L

∂q̇σ

)
=

∂L

∂qσ
+

k∑

j=1

λj
∂Gj
∂qσ

. (8.119)

Taking each generalized coordinate in turn, the equations of motion are thus

MẌ = λ1 − λ3 (8.120)

MŸ = −Mg + λ2 − λ4 (8.121)

mẍ = λ3 (8.122)

mÿ = −mg + λ4 (8.123)

I φ̈ = −Rλ1 (8.124)

0 = −R cos θ λ3 −R sin θ λ4 . (8.125)

Along with the four constraint equations, these determine the motion of the system. Note
that the last of the equations of motion, for the generalized coordinate qσ = θ, says that
Qθ = 0, which means that the force of constraint on the point mass is radial. Were the point
mass replaced by a rolling object, there would be an angular component to this constraint
in order that there be no slippage.

Implementation of constraints

We now use the constraint equations to eliminate X, Y , x, and y in terms of θ and φ:

X = Rφ , Y = R , x = Rφ+R sin θ , y = R(1− cos θ) . (8.126)

We also need the derivatives:

ẋ = R φ̇+R cos θ θ̇ , ẍ = R φ̈+R cos θ θ̈ −R sin θ θ̇2 , (8.127)

and
ẏ = R sin θ θ̇ , ẍ = R sin θ θ̈ +R cos θ θ̇2 , (8.128)
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as well as
Ẋ = R φ̇ , Ẍ = R φ̈ , Ẏ = 0 , Ÿ = 0 . (8.129)

We now may write the conserved charge as

Λ =
1

R
(I +MR2 +mR2) φ̇+mR cos θ θ̇ . (8.130)

This, in turn, allows us to eliminate φ̇ in terms of θ̇ and the constant Λ:

φ̇ =
γ

1 + γ

(
Λ

mR
− θ̇ cos θ

)
, (8.131)

where

γ =
mR2

I +MR2
. (8.132)

The energy is then

E = 1
2(I +MR2) φ̇2 + 1

2m
(
R2 φ̇2 +R2 θ̇2 + 2R2 cos θ φ̇ θ̇

)
+MgR +mgR(1 − cos θ)

= 1
2mR

2

{(
1 + γ sin2θ

1 + γ

)
θ̇2 +

2g

R
(1− cos θ) +

γ

1 + γ

(
Λ

mR

)2
+

2Mg

mR

}
. (8.133)

The last two terms inside the big bracket are constant, so we can write this as
(

1 + γ sin2θ

1 + γ

)
θ̇2 +

2g

R
(1− cos θ) =

4gk

R
. (8.134)

Here, k is a dimensionless measure of the energy of the system, after subtracting the afore-
mentioned constants. If k > 1, then θ̇2 > 0 for all θ, which would result in ‘loop-the-loop’
motion of the point mass inside the hoop – provided, that is, the normal force of the hoop
doesn’t vanish and the point mass doesn’t detach from the hoop’s surface.

Equation motion for θ(t)

The equation of motion for θ obtained by eliminating all other variables from the original
set of ten equations is the same as Ė = 0, and may be written

(
1 + γ sin2θ

1 + γ

)
θ̈ +

(
γ sin θ cos θ

1 + γ

)
θ̇2 = − g

R
. (8.135)

We can use this to write θ̈ in terms of θ̇2, and, after invoking eqn. 17.51, in terms of θ itself.
We find

θ̇2 =
4g

R
·
(

1 + γ

1 + γ sin2θ

)(
k − sin2 1

2θ
)

(8.136)

θ̈ = − g
R
· (1 + γ) sin θ
(
1 + γ sin2θ

)2
[
4γ
(
k − sin2 1

2θ
)
cos θ + 1 + γ sin2θ

]
. (8.137)
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Forces of constraint

We can solve for the λj, and thus obtain the forces of constraint Qσ =
∑

j λj
∂Gj

∂qσ
.

λ3 = mẍ = mR φ̈+mR cos θ θ̈ −mR sin θ θ̇2

=
mR

1 + γ

[
θ̈ cos θ − θ̇2 sin θ

]
(8.138)

λ4 = mÿ +mg = mg +mR sin θ θ̈ +mR cos θ θ̇2

= mR
[
θ̈ sin θ + θ̇2 sin θ +

g

R

]
(8.139)

λ1 = − I
R
φ̈ =

(1 + γ)I

mR2
λ3 (8.140)

λ2 = (M +m)g +mÿ = λ4 +Mg . (8.141)

One can check that λ3 cos θ + λ4 sin θ = 0.

The condition that the normal force of the hoop on the point mass vanish is λ3 = 0, which
entails λ4 = 0. This gives

−(1 + γ sin2θ) cos θ = 4(1 + γ)
(
k − sin2 1

2θ
)
. (8.142)

Note that this requires cos θ < 0, i.e. the point of detachment lies above the horizontal
diameter of the hoop. Clearly if k is sufficiently large, the equality cannot be satisfied, and
the point mass executes a periodic ‘loop-the-loop’ motion. In particular, setting θ = π, we
find that

kc = 1 +
1

4(1 + γ)
. (8.143)

If k > kc, then there is periodic ‘loop-the-loop’ motion. If k < kc, then the point mass may
detach at a critical angle θ∗, but only if the motion allows for cos θ < 0. From the energy
conservation equation, we have that the maximum value of θ achieved occurs when θ̇ = 0,
which means

cos θmax = 1− 2k . (8.144)

If 1
2 < k < kc, then, we have the possibility of detachment. This means the energy must be

large enough but not too large.
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Chapter 9

Central Forces and Orbital
Mechanics

9.1 Reduction to a one-body problem

Consider two particles interacting via a potential U(r1, r2) = U
(
|r1 − r2|

)
. Such a poten-

tial, which depends only on the relative distance between the particles, is called a central

potential. The Lagrangian of this system is then

L = T − U = 1
2m1ṙ

2
1 + 1

2m2ṙ
2
2 − U

(
|r1 − r2|

)
. (9.1)

9.1.1 Center-of-mass (CM) and relative coordinates

The two-body central force problem may always be reduced to two independent one-body
problems, by transforming to center-of-mass (R) and relative (r) coordinates (see Fig. 9.1),
viz.

R =
m1r1 +m2r2

m1 +m2
r1 = R+

m2

m1 +m2
r (9.2)

r = r1 − r2 r2 = R− m1

m1 +m2
r (9.3)

We then have

L = 1
2m1ṙ1

2 + 1
2m2ṙ2

2 − U
(
|r1 − r2|

)
(9.4)

= 1
2MṘ

2 + 1
2µṙ

2 − U(r) . (9.5)

143
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Figure 9.1: Center-of-mass (R) and relative (r) coordinates.

where

M = m1 +m2 (total mass) (9.6)

µ =
m1m2

m1 +m2
(reduced mass) . (9.7)

9.1.2 Solution to the CM problem

We have ∂L/∂R = 0, which gives Ṙd = 0 and hence

R(t) = R(0) + Ṙ(0) t . (9.8)

Thus, the CM problem is trivial. The center-of-mass moves at constant velocity.

9.1.3 Solution to the relative coordinate problem

Angular momentum conservation: We have that ℓ = r × p = µr × ṙ is a constant of the
motion. This means that the motion r(t) is confined to a plane perpendicular to ℓ. It is
convenient to adopt two-dimensional polar coordinates (r, φ). The magnitude of ℓ is

ℓ = µr2φ̇ = 2µȦ (9.9)

where dA = 1
2r

2dφ is the differential element of area subtended relative to the force center.
The relative coordinate vector for a central force problem subtends equal areas in equal times.

This is known as Kepler’s Second Law.
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Energy conservation: The equation of motion for the relative coordinate is

d

dt

(
∂L

∂ṙ

)
=
∂L

∂r
⇒ µr̈ = −∂U

∂r
. (9.10)

Taking the dot product with ṙ, we have

0 = µr̈ · ṙ +
∂U

∂r
· ṙ

=
d

dt

{
1
2µṙ

2 + U(r)
}

=
dE

dt
. (9.11)

Thus, the relative coordinate contribution to the total energy is itself conserved. The total
energy is of course Etot = E + 1

2MṘ
2.

Since ℓ is conserved, and since r · ℓ = 0, all motion is confined to a plane perpendicular to
ℓ. Choosing coordinates such that ẑ = ℓ̂, we have

E = 1
2µṙ

2 + U(r) = 1
2µṙ

2 +
ℓ2

2µr2
+ U(r)

= 1
2µṙ

2 + Ueff(r) (9.12)

Ueff(r) =
ℓ2

2µr2
+ U(r) . (9.13)

Integration of the Equations of Motion, Step I: The second order equation for r(t)
is

dE

dt
= 0 ⇒ µr̈ =

ℓ2

µr3
− dU(r)

dr
= −dUeff(r)

dr
. (9.14)

However, conservation of energy reduces this to a first order equation, via

ṙ = ±
√

2

µ

(
E − Ueff(r)

)
⇒ dt = ±

√
µ
2 dr√

E − ℓ2

2µr2
− U(r)

. (9.15)

This gives t(r), which must be inverted to obtain r(t). In principle this is possible. Note
that a constant of integration also appears at this stage – call it r0 = r(t = 0).

Integration of the Equations of Motion, Step II: After finding r(t) one can inte-
grate to find φ(t) using the conservation of ℓ:

φ̇ =
ℓ

µr2
⇒ dφ =

ℓ

µr2(t)
dt . (9.16)

This gives φ(t), and introduces another constant of integration – call it φ0 = φ(t = 0).

Pause to Reflect on the Number of Constants: Confined to the plane perpendicular
to ℓ, the relative coordinate vector has two degrees of freedom. The equations of motion
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are second order in time, leading to four constants of integration. Our four constants are
E, ℓ, r0, and φ0.

The original problem involves two particles, hence six positions and six velocities, making
for 12 initial conditions. Six constants are associated with the CM system: R(0) and Ṙ(0).
The six remaining constants associated with the relative coordinate system are ℓ (three

components), E, r0, and φ0.

Geometric Equation of the Orbit: From ℓ = µr2φ̇, we have

d

dt
=

ℓ

µr2
d

dφ
, (9.17)

leading to

d2r

dφ2
− 2

r

(
dr

dφ

)2

=
µr4

ℓ2
F (r) + r (9.18)

where F (r) = −dU(r)/dr is the magnitude of the central force. This second order equation
may be reduced to a first order one using energy conservation:

E = 1
2µṙ

2 + Ueff(r)

=
ℓ2

2µr4

(
dr

dφ

)2
+ Ueff(r) . (9.19)

Thus,

dφ = ± ℓ√
2µ
· dr

r2
√
E − Ueff(r)

, (9.20)

which can be integrated to yield φ(r), and then inverted to yield r(φ). Note that only
one integration need be performed to obtain the geometric shape of the orbit, while two
integrations – one for r(t) and one for φ(t) – must be performed to obtain the full motion
of the system.

It is sometimes convenient to rewrite this equation in terms of the variable s = 1/r:

d2s

dφ2
+ s = − µ

ℓ2s2
F
(
s−1
)
. (9.21)

As an example, suppose the geometric orbit is r(φ) = k eαφ, known as a logarithmic spiral.
What is the force? We invoke (9.18), with s′′(φ) = α2 s, yielding

F
(
s−1
)

= −(1 + α2)
ℓ2

µ
s3 ⇒ F (r) = −C

r3
(9.22)

with

α2 =
µC

ℓ2
− 1 . (9.23)
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Figure 9.2: Stable and unstable circular orbits. Left panel: U(r) = −k/r produces a stable
circular orbit. Right panel: U(r) = −k/r4 produces an unstable circular orbit.

The general solution for s(φ) for this force law is

s(φ) =





A cosh(αφ) +B sinh(−αφ) if ℓ2 > µC

A′ cos
(
|α|φ

)
+B′ sin

(
|α|φ

)
if ℓ2 < µC .

(9.24)

The logarithmic spiral shape is a special case of the first kind of orbit.

9.2 Almost Circular Orbits

A circular orbit with r(t) = r0 satisfies r̈ = 0, which means that U ′
eff(r0) = 0, which says

that F (r0) = −ℓ2/µr30. This is negative, indicating that a circular orbit is possible only if
the force is attractive over some range of distances. Since ṙ = 0 as well, we must also have
E = Ueff(r0). An almost circular orbit has r(t) = r0 + η(t), where |η/r0| ≪ 1. To lowest
order in η, one derives the equations

d2η

dt2
= −ω2 η , ω2 =

1

µ
U ′′

eff(r0) . (9.25)

If ω2 > 0, the circular orbit is stable and the perturbation oscillates harmonically. If ω2 < 0,
the circular orbit is unstable and the perturbation grows exponentially. For the geometric
shape of the perturbed orbit, we write r = r0 + η, and from (9.18) we obtain

d2η

dφ2
=

(
µr40
ℓ2

F ′(r0)− 3

)
η = −β2 η , (9.26)

with

β2 = 3 +
d lnF (r)

d ln r

∣∣∣∣∣
r0

. (9.27)
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The solution here is
η(φ) = η0 cos β(φ− δ0) , (9.28)

where η0 and δ0 are initial conditions. Setting η = η0, we obtain the sequence of φ values

φn = δ0 +
2πn

β
, (9.29)

at which η(φ) is a local maximum, i.e. at apoapsis, where r = r0 + η0. Setting r = r0 − η0

is the condition for closest approach, i.e. periapsis. This yields the identical set if angles,
just shifted by π. The difference,

∆φ = φn+1 − φn − 2π = 2π
(
β−1 − 1

)
, (9.30)

is the amount by which the apsides (i.e. periapsis and apoapsis) precess during each cycle.
If β > 1, the apsides advance, i.e. it takes less than a complete revolution ∆φ = 2π between
successive periapses. If β < 1, the apsides retreat, and it takes longer than a complete
revolution between successive periapses. The situation is depicted in Fig. 9.3 for the case
β = 1.1. Below, we will exhibit a soluble model in which the precessing orbit may be
determined exactly. Finally, note that if β = p/q is a rational number, then the orbit is
closed , i.e. it eventually retraces itself, after every q revolutions.

As an example, let F (r) = −kr−α. Solving for a circular orbit, we write

U ′
eff(r) =

k

rα
− ℓ2

µr3
= 0 , (9.31)

which has a solution only for k > 0, corresponding to an attractive potential. We then find

r0 =

(
ℓ2

µk

)1/(3−α)

, (9.32)

and β2 = 3 − α. The shape of the perturbed orbits follows from η′′ = −β2 η. Thus, while
circular orbits exist whenever k > 0, small perturbations about these orbits are stable only
for β2 > 0, i.e. for α < 3. One then has η(φ) = A cos β(φ − φ0). The perturbed orbits are
closed, at least to lowest order in η, for α = 3 − (p/q)2, i.e. for β = p/q. The situation is
depicted in Fig. 9.2, for the potentials U(r) = −k/r (α = 2) and U(r) = −k/r4 (α = 5).

9.3 Precession in a Soluble Model

Let’s start with the answer and work backwards. Consider the geometrical orbit,

r(φ) =
r0

1− ǫ cos βφ . (9.33)

Our interest is in bound orbits, for which 0 ≤ ǫ < 1 (see Fig. 9.3). What sort of potential
gives rise to this orbit? Writing s = 1/r as before, we have

s(φ) = s0 (1− ε cos βφ) . (9.34)
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Substituting into (9.21), we have

− µ

ℓ2s2
F
(
s−1
)

=
d2s

dφ2
+ s

= β2 s0 ǫ cos βφ+ s

= (1− β2) s + β2 s0 , (9.35)

from which we conclude

F (r) = − k

r2
+
C

r3
, (9.36)

with

k = β2s0
ℓ2

µ
, C = (β2 − 1)

ℓ2

µ
. (9.37)

The corresponding potential is

U(r) = −k
r

+
C

2r2
+ U∞ , (9.38)

where U∞ is an arbitrary constant, conveniently set to zero. If µ and C are given, we have

r0 =
ℓ2

µk
+
C

k
, β =

√
1 +

µC

ℓ2
. (9.39)

When C = 0, these expressions recapitulate those from the Kepler problem. Note that
when ℓ2 + µC < 0 that the effective potential is monotonically increasing as a function of
r. In this case, the angular momentum barrier is overwhelmed by the (attractive, C < 0)
inverse square part of the potential, and Ueff(r) is monotonically increasing. The orbit then
passes through the force center. It is a useful exercise to derive the total energy for the
orbit,

E = (ε2 − 1)
µk2

2(ℓ2 + µC)
⇐⇒ ε2 = 1 +

2E(ℓ2 + µC)

µk2
. (9.40)

9.4 The Kepler Problem: U(r) = −k r
−1

9.4.1 Geometric shape of orbits

The force is F (r) = −kr−2, hence the equation for the geometric shape of the orbit is

d2s

dφ2
+ s = − µ

ℓ2s2
F (s−1) =

µk

ℓ2
, (9.41)

with s = 1/r. Thus, the most general solution is

s(φ) = s0 − C cos(φ− φ0) , (9.42)
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Figure 9.3: Precession in a soluble model, with geometric orbit r(φ) = r0/(1 − ε cos βφ),
shown here with β = 1.1. Periapsis and apoapsis advance by ∆φ = 2π(1 − β−1) per cycle.

where C and φ0 are constants. Thus,

r(φ) =
r0

1− ε cos(φ− φ0)
, (9.43)

where r0 = ℓ2/µk and where we have defined a new constant ε ≡ Cr0.

9.4.2 Laplace-Runge-Lenz vector

Consider the vector

A = p× ℓ− µk r̂ , (9.44)
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Figure 9.4: The effective potential for the Kepler problem, and associated phase curves.
The orbits are geometrically described as conic sections: hyperbolae (E > 0), parabolae
(E = 0), ellipses (Emin < E < 0), and circles (E = Emin).

where r̂ = r/|r| is the unit vector pointing in the direction of r. We may now show that A
is conserved:

dA

dt
=

d

dt

{
p× ℓ− µkr

r

}

= ṗ× ℓ+ p× ℓ̇− µk rṙ − rṙ
r2

= −kr
r3
× (µr × ṙ)− µk ṙ

r
+ µk

ṙr

r2

= −µk r(r · ṙ)
r3

+ µk
ṙ(r · r)
r3

− µk ṙ
r

+ µk
ṙr

r2
= 0 . (9.45)

So A is a conserved vector which clearly lies in the plane of the motion. A points toward
periapsis, i.e. toward the point of closest approach to the force center.

Let’s assume apoapsis occurs at φ = φ0. Then

A · r = −Ar cos(φ− φ0) = ℓ2 − µkr (9.46)

giving

r(φ) =
ℓ2

µk −A cos(φ− φ0)
=

a(1− ε2)
1− ε cos(φ− φ0)

, (9.47)

where

ε =
A

µk
, a(1− ε2) =

ℓ2

µk
. (9.48)
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The orbit is a conic section with eccentricity ε. Squaring A, one finds

A2 = (p× ℓ)2 − 2µk r̂ · p× ℓ+ µ2k2

= p2ℓ2 − 2µℓ2
k

r
+ µ2k2

= 2µℓ2
(
p2

2µ
− k

r
+
µk2

2ℓ2

)
= 2µℓ2

(
E +

µk2

2ℓ2

)
(9.49)

and thus

a = − k

2E
, ε2 = 1 +

2Eℓ2

µk2
. (9.50)

9.4.3 Kepler orbits are conic sections

There are four classes of conic sections:

• Circle: ε = 0, E = −µk2/2ℓ2, radius a = ℓ2/µk. The force center lies at the center of
circle.

• Ellipse: 0 < ε < 1, −µk2/2ℓ2 < E < 0, semimajor axis a = −k/2E, semiminor axis
b = a

√
1− ε2. The force center is at one of the foci.

• Parabola: ε = 1, E = 0, force center is the focus.

• Hyperbola: ε > 1, E > 0, force center is closest focus (attractive) or farthest focus
(repulsive).

To see that the Keplerian orbits are indeed conic sections, consider the ellipse of Fig. 9.6.
The law of cosines gives

ρ2 = r2 + 4f2 − 4rf cosφ , (9.51)

where f = εa is the focal distance. Now for any point on an ellipse, the sum of the distances
to the left and right foci is a constant, and taking φ = 0 we see that this constant is 2a.
Thus, ρ = 2a− r, and we have

(2a− r)2 = 4a2 − 4ar + r2 = r2 + 4ε2a2 − 4εr cosφ

⇒ r(1− ε cosφ) = a(1− ε2) . (9.52)

Thus, we obtain

r(φ) =
a (1− ε2)
1− ε cosφ

, (9.53)

and we therefore conclude that

r0 =
ℓ2

µk
= a (1− ε2) . (9.54)
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Figure 9.5: Keplerian orbits are conic sections, classified according to eccentricity: hyper-
bola (ǫ > 1), parabola (ǫ = 1), ellipse (0 < ǫ < 1), and circle (ǫ = 0). The Laplace-Runge-
Lenz vector, A, points toward periapsis.

Next let us examine the energy,

E = 1
2µṙ

2 + Ueff(r)

= 1
2µ

(
ℓ

µr2
dr

dφ

)2

+
ℓ2

2µr2
− k

r

=
ℓ2

2µ

(
ds

dφ

)2

+
ℓ2

2µ
s2 − ks , (9.55)

with

s =
1

r
=
µk

ℓ2

(
1− ε cos φ

)
. (9.56)

Thus,

ds

dφ
=
µk

ℓ2
ε sinφ , (9.57)
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Figure 9.6: The Keplerian ellipse, with the force center at the left focus. The focal distance
is f = εa, where a is the semimajor axis length. The length of the semiminor axis is
b =
√

1− ε2 a.

and
(
ds

dφ

)2

=
µ2k2

ℓ4
ε2 sin2φ

=
µ2k2ε2

ℓ4
−
(
µk

ℓ2
− s
)2

= −s2 +
2µk

ℓ2
s+

µ2k2

ℓ4
(
ε2 − 1

)
. (9.58)

Substituting this into eqn. 9.55, we obtain

E =
µk2

2ℓ2
(
ε2 − 1

)
. (9.59)

For the hyperbolic orbit, depicted in Fig. 9.7, we have r− ρ = ∓2a, depending on whether
we are on the attractive or repulsive branch, respectively. We then have

(r ± 2a)2 = 4a2 ± 4ar + r2 = r2 + 4ε2a2 − 4εr cosφ

⇒ r(±1 + ε cosφ) = a(ε2 − 1) . (9.60)

This yields

r(φ) =
a (ε2 − 1)

±1 + ε cos φ
. (9.61)

9.4.4 Period of bound Kepler orbits

From ℓ = µr2φ̇ = 2µȦ, the period is τ = 2µA/ℓ, where A = πa2
√

1− ε2 is the area enclosed
by the orbit. This gives

τ = 2π

(
µa3

k

)1/2

= 2π

(
a3

GM

)1/2

(9.62)
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Figure 9.7: The Keplerian hyperbolae, with the force center at the left focus. The left (blue)
branch corresponds to an attractive potential, while the right (red) branch corresponds to
a repulsive potential. The equations of these branches are r = ρ = ∓2a, where the top sign
corresponds to the left branch and the bottom sign to the right branch.

as well as
a3

τ2
=
GM

4π2
, (9.63)

where k = Gm1m2 and M = m1 +m2 is the total mass. For planetary orbits, m1 = M⊙ is

the solar mass and m2 = mp is the planetary mass. We then have

a3

τ2
=
(
1 +

mp

M⊙

)GM⊙
4π2

≈ GM⊙
4π2

, (9.64)

which is to an excellent approximation independent of the planetary mass. (Note that

mp/M⊙ ≈ 10−3 even for Jupiter.) This analysis also holds, mutatis mutandis, for the
case of satellites orbiting the earth, and indeed in any case where the masses are grossly
disproportionate in magnitude.

9.4.5 Escape velocity

The threshold for escape from a gravitational potential occurs at E = 0. Since E = T + U
is conserved, we determine the escape velocity for a body a distance r from the force center
by setting

E = 0 = 1
2µv

2
esc(t)−

GMm

r
⇒ vesc(r) =

√
2G(M +m)

r
. (9.65)

When M ≫ m, vesc(r) =
√

2GM/r. Thus, for an object at the surface of the earth,
vesc =

√
2gRE = 11.2 km/s.
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9.4.6 Satellites and spacecraft

A satellite in a circular orbit a distance h above the earth’s surface has an orbital period

τ =
2π√
GME

(RE + h)3/2 , (9.66)

where we take msatellite ≪ME. For low earth orbit (LEO), h≪ RE = 6.37× 106 m, in which

case τLEO = 2π
√
RE/g = 1.4 hr.

Consider a weather satellite in an elliptical orbit whose closest approach to the earth
(perigee) is 200 km above the earth’s surface and whose farthest distance (apogee) is 7200
km above the earth’s surface. What is the satellite’s orbital period? From Fig. 9.6, we see
that

dapogee = RE + 7200 km = 13571 km

dperigee = RE + 200 km = 6971 km

a = 1
2 (dapogee + dperigee) = 10071 km . (9.67)

We then have

τ =
( a

RE

)3/2
· τLEO ≈ 2.65 hr . (9.68)

What happens if a spacecraft in orbit about the earth fires its rockets? Clearly the energy
and angular momentum of the orbit will change, and this means the shape will change. If
the rockets are fired (in the direction of motion) at perigee, then perigee itself is unchanged,
because v · r = 0 is left unchanged at this point. However, E is increased, hence the eccen-

tricity ε =
√

1 + 2Eℓ2

µk2 increases. This is the most efficient way of boosting a satellite into an

orbit with higher eccentricity. Conversely, and somewhat paradoxically, when a satellite in
LEO loses energy due to frictional drag of the atmosphere, the energy E decreases. Initially,
because the drag is weak and the atmosphere is isotropic, the orbit remains circular. Since
E decreases, 〈T 〉 = −E must increase, which means that the frictional forces cause the
satellite to speed up!

9.4.7 Two examples of orbital mechanics

• Problem #1: At perigee of an elliptical Keplerian orbit, a satellite receives an impulse
∆p = p0r̂. Describe the resulting orbit.

◦ Solution #1: Since the impulse is radial, the angular momentum ℓ = r × p is un-
changed. The energy, however, does change, with ∆E = p2

0/2µ. Thus,

ε2f = 1 +
2Efℓ

2

µk2
= ε2i +

(
ℓp0

µk

)2

. (9.69)
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Figure 9.8: At perigee of an elliptical orbit ri(φ), a radial impulse ∆p is applied. The shape
of the resulting orbit rf(φ) is shown.

The new semimajor axis length is

af =
ℓ2/µk

1− ε2f
= ai ·

1− ε2i
1− ε2f

=
ai

1− (aip
2
0/µk)

. (9.70)

The shape of the final orbit must also be a Keplerian ellipse, described by

rf(φ) =
ℓ2

µk
· 1

1− εf cos(φ+ δ)
, (9.71)

where the phase shift δ is determined by setting

ri(π) = rf(π) =
ℓ2

µk
· 1

1 + εi
. (9.72)

Solving for δ, we obtain
δ = cos−1

(
εi/εf

)
. (9.73)

The situation is depicted in Fig. 9.8.
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Figure 9.9: The larger circular orbit represents the orbit of the earth. The elliptical orbit
represents that for an object orbiting the Sun with distance at perihelion equal to the Sun’s
radius.

• Problem #2: Which is more energy efficient – to send nuclear waste outside the solar
system, or to send it into the Sun?

◦ Solution #2: Escape velocity for the solar system is vesc,⊙(r) =
√
GM⊙/r. At a

distance aE, we then have vesc,⊙(aE) =
√

2 vE, where vE =
√
GM⊙/aE = 2πaE/τE =

29.9 km/s is the velocity of the earth in its orbit. The satellite is launched from earth,
and clearly the most energy efficient launch will be one in the direction of the earth’s
motion, in which case the velocity after escape from earth must be u =

(√
2− 1

)
vE =

12.4 km/s. The speed just above the earth’s atmosphere must then be ũ, where

1
2mũ

2 − GMEm

RE

= 1
2mu

2 , (9.74)

or, in other words,
ũ2 = u2 + v2

esc,E . (9.75)

We compute ũ = 16.7 km/s.

The second method is to place the trash ship in an elliptical orbit whose perihelion
is the Sun’s radius, R⊙ = 6.98 × 108 m, and whose aphelion is aE. Using the general
equation r(φ) = (ℓ2/µk)/(1 − ε cos φ) for a Keplerian ellipse, we therefore solve the
two equations

r(φ = π) = R⊙ =
1

1 + ε
· ℓ

2

µk
(9.76)

r(φ = 0) = aE =
1

1− ε ·
ℓ2

µk
. (9.77)

We thereby obtain

ε =
aE −R⊙
aE +R⊙

= 0.991 , (9.78)
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which is a very eccentric ellipse, and

ℓ2

µk
=

a2
E v

2

G(M⊙ +m)
≈ aE ·

v2

v2
E

= (1− ε) aE =
2aER⊙
aE +R⊙

. (9.79)

Hence,

v2 =
2R⊙

aE +R⊙
v2

E , (9.80)

and the necessary velocity relative to earth is

u =

(√
2R⊙

aE +R⊙
− 1

)
vE ≈ −0.904 vE , (9.81)

i.e. u = −27.0 km/s. Launch is in the opposite direction from the earth’s orbital mo-
tion, and from ũ2 = u2 +v2

esc,E we find ũ = −29.2 km/s, which is larger (in magnitude)
than in the first scenario. Thus, it is cheaper to ship the trash out of the solar system
than to send it crashing into the Sun, by a factor ũ2

I /ũ
2
II = 0.327.

9.5 Appendix I : Mission to Neptune

Four earth-launched spacecraft have escaped the solar system: Pioneer 10 (launch 3/3/72),
Pioneer 11 (launch 4/6/73), Voyager 1 (launch 9/5/77), and Voyager 2 (launch 8/20/77).1

The latter two are still functioning, and each are moving away from the Sun at a velocity
of roughly 3.5 AU/yr.

As the first objects of earthly origin to leave our solar system, both Pioneer spacecraft
featured a graphic message in the form of a 6” x 9” gold anodized plaque affixed to the
spacecrafts’ frame. This plaque was designed in part by the late astronomer and popular
science writer Carl Sagan. The humorist Dave Barry, in an essay entitled Bring Back Carl’s
Plaque, remarks,

But the really bad part is what they put on the plaque. I mean, if we’re going to
have a plaque, it ought to at least show the aliens what we’re really like, right?
Maybe a picture of people eating cheeseburgers and watching “The Dukes of
Hazzard.” Then if aliens found it, they’d say, “Ah. Just plain folks.”

But no. Carl came up with this incredible science-fair-wimp plaque that features
drawings of – you are not going to believe this – a hydrogen atom and naked
people. To represent the entire Earth! This is crazy! Walk the streets of any
town on this planet, and the two things you will almost never see are hydrogen
atoms and naked people.

1There is a very nice discussion in the Barger and Olsson book on ‘Grand Tours of the Outer Planets’.
Here I reconstruct and extend their discussion.
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Figure 9.10: The unforgivably dorky Pioneer 10 and Pioneer 11 plaque.

During August, 1989, Voyager 2 investigated the planet Neptune. A direct trip to Neptune
along a Keplerian ellipse with rp = aE = 1AU and ra = aN = 30.06AU would take 30.6

years. To see this, note that rp = a (1 − ε) and ra = a (1 + ε) yield

a = 1
2

(
aE + aN

)
= 15.53AU , ε =

aN − aE

aN + aE

= 0.9356 . (9.82)

Thus,

τ = 1
2 τE ·

( a
aE

)3/2
= 30.6 yr . (9.83)

The energy cost per kilogram of such a mission is computed as follows. Let the speed of
the probe after its escape from earth be vp = λvE, and the speed just above the atmosphere

(i.e. neglecting atmospheric friction) is v0. For the most efficient launch possible, the probe
is shot in the direction of earth’s instantaneous motion about the Sun. Then we must have

1
2mv2

0 −
GMEm

RE

= 1
2m (λ− 1)2 v2

E , (9.84)

since the speed of the probe in the frame of the earth is vp − vE = (λ− 1) vE. Thus,

E

m
= 1

2v
2
0 =

[
1
2(λ− 1)2 + h

]
v2

E (9.85)

v2
E =

GM⊙
aE

= 6.24 × 107 RJ/kg ,
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Figure 9.11: Mission to Neptune. The figure at the lower right shows the orbits of Earth,
Jupiter, and Neptune in black. The cheapest (in terms of energy) direct flight to Neptune,
shown in blue, would take 30.6 years. By swinging past the planet Jupiter, the satellite can
pick up great speed and with even less energy the mission time can be cut to 8.5 years (red
curve). The inset in the upper left shows the scattering event with Jupiter.

where

h ≡ ME

M⊙
· aE

RE

= 7.050 × 10−2 . (9.86)

Therefore, a convenient dimensionless measure of the energy is

η ≡ 2E

mv2
E

=
v2
0

v2
E

= (λ− 1)2 + 2h . (9.87)

As we shall derive below, a direct mission to Neptune requires

λ ≥
√

2aN

aN + aE

= 1.3913 , (9.88)

which is close to the criterion for escape from the solar system, λesc =
√

2. Note that about
52% of the energy is expended after the probe escapes the Earth’s pull, and 48% is expended
in liberating the probe from Earth itself.

This mission can be done much more economically by taking advantage of a Jupiter flyby, as
shown in Fig. 9.11. The idea of a flyby is to steal some of Jupiter’s momentum and then fly
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away very fast before Jupiter realizes and gets angry. The CM frame of the probe-Jupiter
system is of course the rest frame of Jupiter, and in this frame conservation of energy means
that the final velocity uf is of the same magnitude as the initial velocity ui. However, in

the frame of the Sun, the initial and final velocities are vJ + ui and vJ + uf , respectively,

where vJ is the velocity of Jupiter in the rest frame of the Sun. If, as shown in the inset
to Fig. 9.11, uf is roughly parallel to vJ, the probe’s velocity in the Sun’s frame will be
enhanced. Thus, the motion of the probe is broken up into three segments:

I : Earth to Jupiter

II : Scatter off Jupiter’s gravitational pull

III : Jupiter to Neptune

We now analyze each of these segments in detail. In so doing, it is useful to recall that the
general form of a Keplerian orbit is

r(φ) =
d

1− ε cosφ
, d =

ℓ2

µk
=
∣∣ε2 − 1

∣∣ a . (9.89)

The energy is

E = (ε2 − 1)
µk2

2ℓ2
, (9.90)

with k = GMm, where M is the mass of either the Sun or a planet. In either case, M
dominates, and µ = Mm/(M + m) ≃ m to extremely high accuracy. The time for the

trajectory to pass from φ = φ1 to φ = φ2 is

T =

∫
dt =

φ2∫

φ1

dφ

φ̇
=
µ

ℓ

φ2∫

φ1

dφ r2(φ) =
ℓ3

µk2

φ2∫

φ1

dφ
[
1− ε cosφ

]2 . (9.91)

For reference,

aE = 1AU aJ = 5.20AU aN = 30.06AU

ME = 5.972 × 1024 kg MJ = 1.900 × 1027 kg M⊙ = 1.989 × 1030 kg

with 1AU = 1.496 × 108 km. Here aE,J,N and ME,J,⊙ are the orbital radii and masses of
Earth, Jupiter, and Neptune, and the Sun. The last thing we need to know is the radius of
Jupiter,

RJ = 9.558 × 10−4 AU .

We need RJ because the distance of closest approach to Jupiter, or perijove, must be RJ or
greater, or else the probe crashes into Jupiter!

9.5.1 I. Earth to Jupiter

The probe’s velocity at perihelion is vp = λvE. The angular momentum is ℓ = µaE · λvE,
whence

d =
(aEλvE)2

GM⊙
= λ2 aE . (9.92)
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From r(π) = aE, we obtain

εI = λ2 − 1 . (9.93)

This orbit will intersect the orbit of Jupiter if ra ≥ aJ, which means

d

1− εI

≥ aJ ⇒ λ ≥
√

2aJ

aJ + aE

= 1.2952 . (9.94)

If this inequality holds, then intersection of Jupiter’s orbit will occur for

φJ = 2π − cos−1

(
aJ − λ2aE

(λ2 − 1) aJ

)
. (9.95)

Finally, the time for this portion of the trajectory is

τEJ = τE · λ3

φJ∫

π

dφ

2π

1
[
1− (λ2 − 1) cos φ

]2 . (9.96)

9.5.2 II. Encounter with Jupiter

We are interested in the final speed vf of the probe after its encounter with Jupiter. We

will determine the speed vf and the angle δ which the probe makes with respect to Jupiter
after its encounter. According to the geometry of Fig. 9.11,

v2
f = v2

J + u2 − 2uvJ cos(χ+ γ) (9.97)

cos δ =
v2

J + v2
f − u2

2vfvJ

(9.98)

Note that

v2
J =

GM⊙
aJ

=
aE

aJ

· v2
E . (9.99)

But what are u, χ, and γ?

To determine u, we invoke
u2 = v2

J + v2
i − 2vJvi cos β . (9.100)

The initial velocity (in the frame of the Sun) when the probe crosses Jupiter’s orbit is given
by energy conservation:

1
2m(λvE)2 − GM⊙m

aE

= 1
2mv

2
i −

GM⊙m
aJ

, (9.101)

which yields

v2
i =

(
λ2 − 2 +

2aE

aJ

)
v2

E . (9.102)

As for β, we invoke conservation of angular momentum:

µ(vi cos β)aJ = µ(λvE)aE ⇒ vi cos β = λ
aE

aJ

vE . (9.103)
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The angle γ is determined from

vJ = vi cos β + u cos γ . (9.104)

Putting all this together, we obtain

vi = vE

√
λ2 − 2 + 2x (9.105)

u = vE

√
λ2 − 2 + 3x− 2λx3/2 (9.106)

cos γ =

√
x− λx√

λ2 − 2 + 3x− 2λx3/2
, (9.107)

where
x ≡ aE

aJ

= 0.1923 . (9.108)

We next consider the scattering of the probe by the planet Jupiter. In the Jovian frame,
we may write

r(φ) =
κRJ (1 + εJ)

1 + εJ cosφ
, (9.109)

where perijove occurs at
r(0) = κRJ . (9.110)

Here, κ is a dimensionless quantity, which is simply perijove in units of the Jovian radius.
Clearly we require κ > 1 or else the probe crashes into Jupiter! The probe’s energy in this
frame is simply E = 1

2mu
2, which means the probe enters into a hyperbolic orbit about

Jupiter. Next, from

E =
k

2

ε2 − 1

ℓ2/µk
(9.111)

ℓ2

µk
= (1 + ε)κRJ (9.112)

we find

εJ = 1 + κ

(
RJ

aE

)(
M⊙
MJ

)(
u

vE

)2

. (9.113)

The opening angle of the Keplerian hyperbola is then φc = cos−1
(
ε−1

J

)
, and the angle χ is

related to φc through

χ = π − 2φc = π − 2 cos−1

(
1

εJ

)
. (9.114)

Therefore, we may finally write

vf =

√
x v2

E + u2 + 2u vE

√
x cos(2φc − γ) (9.115)

cos δ =
x v2

E + v2
f − u2

2 vf vE

√
x

. (9.116)



9.5. APPENDIX I : MISSION TO NEPTUNE 165

Figure 9.12: Total time for Earth-Neptune mission as a function of dimensionless velocity
at perihelion, λ = vp/vE. Six different values of κ, the value of perijove in units of the
Jovian radius, are shown: κ = 1.0 (thick blue), κ = 5.0 (red), κ = 20 (green), κ = 50
(blue), κ = 100 (magenta), and κ =∞ (thick black).

9.5.3 III. Jupiter to Neptune

Immediately after undergoing gravitational scattering off Jupiter, the energy and angular
momentum of the probe are

E = 1
2mv

2
f −

GM⊙m
aJ

(9.117)

and

ℓ = µ vf aJ cos δ . (9.118)

We write the geometric equation for the probe’s orbit as

r(φ) =
d

1 + ε cos(φ− φJ − α)
, (9.119)

where

d =
ℓ2

µk
=

(
vf aJ cos δ

vE aE

)2

aE . (9.120)

Setting E = (µk2/2ℓ2)(ε2 − 1), we obtain the eccentricity

ε =

√√√√1 +

(
v2
f

v2
E

− 2aE

aJ

)
d

aE

. (9.121)
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Note that the orbit is hyperbolic – the probe will escape the Sun – if vf > vE ·
√

2x. The
condition that this orbit intersect Jupiter at φ = φJ yields

cosα =
1

ε

(
d

aJ

− 1

)
, (9.122)

which determines the angle α. Interception of Neptune occurs at

d

1 + ε cos(φN − φJ − α)
= aN ⇒ φN = φJ + α+ cos−1 1

ε

(
d

aN

− 1

)
. (9.123)

We then have

τJN = τE ·
(
d

aE

)3 φN∫

φJ

dφ

2π

1
[
1 + ε cos(φ− φJ − α)

]2 . (9.124)

The total time to Neptune is then the sum,

τEN = τEJ + τJN . (9.125)

In Fig. 9.12, we plot the mission time τEN versus the velocity at perihelion, vp = λvE, for
various values of κ. The value κ =∞ corresponds to the case of no Jovian encounter at all.

9.6 Appendix II : Restricted Three-Body Problem

Problem : Consider the ‘restricted three body problem’ in which a light object of mass m
(e.g. a satellite) moves in the presence of two celestial bodies of masses m1 and m2 (e.g. the
sun and the earth, or the earth and the moon). Suppose m1 and m2 execute stable circular
motion about their common center of mass. You may assume m≪ m2 ≤ m1.

(a) Show that the angular frequency for the motion of masses 1 and 2 is related to their
(constant) relative separation, by

ω2
0 =

GM

r30
, (9.126)

where M = m1 +m2 is the total mass.

Solution : For a Kepler potential U = −k/r, the circular orbit lies at r0 = ℓ2/µk, where
ℓ = µr2φ̇ is the angular momentum and k = Gm1m2. This gives

ω2
0 =

ℓ2

µ2 r40
=

k

µr30
=
GM

r30
, (9.127)

with ω0 = φ̇.

(b) The satellite moves in the combined gravitational field of the two large bodies; the
satellite itself is of course much too small to affect their motion. In deriving the motion
for the satellilte, it is convenient to choose a reference frame whose origin is the CM and
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Figure 9.13: The Lagrange points for the earth-sun system. Credit: WMAP project.

which rotates with angular velocity ω0. In the rotating frame the masses m1 and m2 lie,

respectively, at x1 = −αr0 and x2 = βr0, with

α =
m2

M
, β =

m1

M
(9.128)

and with y1 = y2 = 0. Note α+ β = 1.

Show that the Lagrangian for the satellite in this rotating frame may be written

L = 1
2m
(
ẋ− ω0 y

)2
+ 1

2m
(
ẏ + ω0 x

)2
+

Gm1m√
(x+ αr0)

2 + y2

+
Gm2m√

(x− βr0)2 + y2

. (9.129)

Solution : Let the original (inertial) coordinates be (x0, y0). Then let us define the rotated
coordinates (x, y) as

x = cos(ω0t)x0 + sin(ω0t) y0 (9.130)

y = − sin(ω0t)x0 + cos(ω0t) y0 . (9.131)

Therefore,

ẋ = cos(ω0t) ẋ0 + sin(ω0t) ẏ0 + ω0 y (9.132)

ẏ = − sin(ω0t)x0 + cos(ω0t) y0 − ω0 x . (9.133)

Therefore
(ẋ− ω0 y)

2 + (ẏ + ω0 x)
2 = ẋ2

0 + ẏ2
0 , (9.134)
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The Lagrangian is then

L = 1
2m
(
ẋ− ω0 y

)2
+ 1

2m
(
ẏ + ω0 x

)2
+

Gm1m√
(x− x1)

2 + y2
+

Gm2m√
(x− x2)

2 + y2
, (9.135)

which, with x1 ≡ −αr0 and x2 ≡ βr0, agrees with eqn. 9.129

(c) Lagrange discovered that there are five special points where the satellite remains fixed
in the rotating frame. These are called the Lagrange points {L1, L2, L3, L4, L5}. A sketch
of the Lagrange points for the earth-sun system is provided in Fig. 9.13. Observation:
In working out the rest of this problem, I found it convenient to measure all distances in
units of r0 and times in units of ω−1

0 , and to eliminate G by writing Gm1 = β ω2
0 r

3
0 and

Gm2 = αω2
0 r

3
0.

Assuming the satellite is stationary in the rotating frame, derive the equations for the
positions of the Lagrange points.

Solution : At this stage it is convenient to measure all distances in units of r0 and times
in units of ω−1

0 to factor out a term mr20 ω
2
0 from L, writing the dimensionless Lagrangian

L̃ ≡ L/(mr20 ω
2
0). Using as well the definition of ω2

0 to eliminate G, we have

L̃ = 1
2 (ξ̇ − η)2 + 1

2(η̇ + ξ)2 +
β√

(ξ + α)2 + η2
+

α√
(ξ − β)2 + η2

, (9.136)

with

ξ ≡ x

r0
, η ≡ y

r0
, ξ̇ ≡ 1

ω0 r0

dx

dt
, η̇ ≡ 1

ω0 r0

dy

dt
. (9.137)

The equations of motion are then

ξ̈ − 2η̇ = ξ − β(ξ + α)

d3
1

− α(ξ − β)

d3
2

(9.138)

η̈ + 2ξ̇ = η − βη

d3
1

− αη

d3
2

, (9.139)

where

d1 =
√

(ξ + α)2 + η2 , d2 =
√

(ξ − β)2 + η2 . (9.140)

Here, ξ ≡ x/r0, ξ = y/r0, etc. Recall that α + β = 1. Setting the time derivatives to zero
yields the static equations for the Lagrange points:

ξ =
β(ξ + α)

d3
1

+
α(ξ − β)

d3
2

(9.141)

η =
βη

d3
1

+
αη

d3
2

, (9.142)

(d) Show that the Lagrange points with y = 0 are determined by a single nonlinear equation.
Show graphically that this equation always has three solutions, one with x < x1, a second
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Figure 9.14: Graphical solution for the Lagrange points L1, L2, and L3.

with x1 < x < x2, and a third with x > x2. These solutions correspond to the points L3,
L1, and L2, respectively.

Solution : If η = 0 the second equation is automatically satisfied. The first equation then
gives

ξ = β · ξ + α
∣∣ξ + α

∣∣3 + α · ξ − β
∣∣ξ − β

∣∣3 . (9.143)

The RHS of the above equation diverges to +∞ for ξ = −α + 0+ and ξ = β + 0+, and
diverges to −∞ for ξ = −α− 0+ and ξ = β − 0+, where 0+ is a positive infinitesimal. The
situation is depicted in Fig. 9.14. Clearly there are three solutions, one with ξ < −α, one
with −α < ξ < β, and one with ξ > β.

(e) Show that the remaining two Lagrange points, L4 and L5, lie along equilateral triangles
with the two masses at the other vertices.

Solution : If η 6= 0, then dividing the second equation by η yields

1 =
β

d3
1

+
α

d3
2

. (9.144)

Substituting this into the first equation,

ξ =

(
β

d3
1

+
α

d3
2

)
ξ +

(
1

d3
1

− 1

d3
2

)
αβ , (9.145)
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gives
d1 = d2 . (9.146)

Reinserting this into the previous equation then gives the remarkable result,

d1 = d2 = 1 , (9.147)

which says that each of L4 and L5 lies on an equilateral triangle whose two other vertices
are the masses m1 and m2. The side length of this equilateral triangle is r0. Thus, the
dimensionless coordinates of L4 and L5 are

(
ξL4, ηL4

)
=
(

1
2 − α,

√
3

2

)
,

(
ξL5, ηL5

)
=
(

1
2 − α, −

√
3

2

)
. (9.148)

It turns out that L1, L2, and L3 are always unstable. Satellites placed in these positions
must undergo periodic course corrections in order to remain approximately fixed. The SOlar
and Heliopheric Observation satellite, SOHO, is located at L1, which affords a continuous
unobstructed view of the Sun.

(f) Show that the Lagrange points L4 and L5 are stable (obviously you need only consider
one of them) provided that the mass ratio m1/m2 is sufficiently large. Determine this
critical ratio. Also find the frequency of small oscillations for motion in the vicinity of L4
and L5.

Solution : Now we write

ξ = ξL4 + δξ , η = ηL4 + δη , (9.149)

and derive the linearized dynamics. Expanding the equations of motion to lowest order in
δξ and δη, we have

δξ̈ − 2δη̇ =

(
1− β + 3

2β
∂d1

∂ξ

∣∣∣∣
L4

− α− 3
2α

∂d2

∂ξ

∣∣∣∣
L4

)
δξ +

(
3
2β

∂d1

∂η

∣∣∣∣
L4

− 3
2α

∂d2

∂η

∣∣∣∣
L4

)
δη

= 3
4 δξ + 3

√
3

4 ε δη (9.150)

and

δη̈ + 2δξ̇ =

(
3
√

3
2 β

∂d1

∂ξ

∣∣∣∣
L4

+ 3
√

3
2 α

∂d2

∂ξ

∣∣∣∣
L4

)
δξ +

(
3
√

3
2 β

∂d1

∂η

∣∣∣∣
L4

+ 3
√

3
2 α

∂d2

∂η

∣∣∣∣
L4

)
δη

= 3
√

3
4 ε δξ + 9

4 δη , (9.151)

where we have defined

ε ≡ β − α =
m1 −m2

m1 +m2
. (9.152)

As defined, ε ∈ [0, 1].
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Fourier transforming the differential equation, we replace each time derivative by (−iν),
and thereby obtain (

ν2 + 3
4 −2iν + 3

4

√
3 ε

2iν + 3
4

√
3 ε ν2 + 9

4

)(
δξ̂
δη̂

)
= 0 . (9.153)

Nontrivial solutions exist only when the determinant D vanishes. One easily finds

D(ν2) = ν4 − ν2 + 27
16

(
1− ε2

)
, (9.154)

which yields a quadratic equation in ν2, with roots

ν2 = 1
2 ± 1

4

√
27 ε2 − 23 . (9.155)

These frequencies are dimensionless. To convert to dimensionful units, we simply multiply
the solutions for ν by ω0, since we have rescaled time by ω−1

0 .

Note that the L4 and L5 points are stable only if ε2 > 23
27 . If we define the mass ratio

γ ≡ m1/m2, the stability condition is equivalent to

γ =
m1

m2
>

√
27 +

√
23√

27−
√

23
= 24.960 , (9.156)

which is satisfied for both the Sun-Jupiter system (γ = 1047) – and hence for the Sun and
any planet – and also for the Earth-Moon system (γ = 81.2).

Objects found at the L4 and L5 points are called Trojans, after the three large asteroids
Agamemnon, Achilles, and Hector found orbiting in the L4 and L5 points of the Sun-Jupiter
system. No large asteroids have been found in the L4 and L5 points of the Sun-Earth system.

Personal aside : David T. Wilkinson

The image in fig. 9.13 comes from the education and outreach program of the Wilkinson
Microwave Anisotropy Probe (WMAP) project, a NASA mission, launched in 2001, which
has produced some of the most important recent data in cosmology. The project is named
in honor of David T. Wilkinson, who was a leading cosmologist at Princeton, and a founder
of the Cosmic Background Explorer (COBE) satellite (launched in 1989). WMAP was sent
to the L2 Lagrange point, on the night side of the earth, where it can constantly scan the
cosmos with an ultra-sensitive microwave detector, shielded by the earth from interfering
solar electromagnetic radiation. The L2 point is of course unstable, with a time scale of
about 23 days. Satellites located at such points must undergo regular course and attitude
corrections to remain situated.

During the summer of 1981, as an undergraduate at Princeton, I was a member of Wilkin-
son’s “gravity group,” working under Jeff Kuhn and Ken Libbrecht. It was a pretty big
group and Dave – everyone would call him Dave – used to throw wonderful parties at his
home, where we’d always play volleyball. I was very fortunate to get to know David Wilkin-
son a bit – after working in his group that summer I took a class from him the following
year. He was a wonderful person, a superb teacher, and a world class physicist.
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Chapter 10

Small Oscillations

10.1 Coupled Coordinates

We assume, for a set of n generalized coordinates {q1, . . . , qn}, that the kinetic energy is a
quadratic function of the velocities,

T = 1
2 Tσσ′(q1, . . . , qn) q̇σ q̇σ′ , (10.1)

where the sum on σ and σ′ from 1 to n is implied. For example, expressed in terms of polar
coordinates (r, θ, φ), the matrix Tij is

Tσσ′ = m




1 0 0
0 r2 0
0 0 r2 sin2θ


 =⇒ T = 1

2 m
(
ṙ2 + r2θ̇2 + r2 sin2θ φ̇2

)
. (10.2)

The potential U(q1, . . . , qn) is assumed to be a function of the generalized coordinates alone:
U = U(q). A more general formulation of the problem of small oscillations is given in the
appendix, section 10.8.

The generalized momenta are

pσ =
∂L

∂q̇σ
= Tσσ′ q̇σ′ , (10.3)

and the generalized forces are

Fσ =
∂L

∂qσ
=

1

2

∂Tσ′σ′′

∂qσ
q̇σ′ q̇σ′′ −

∂U

∂qσ
. (10.4)

The Euler-Lagrange equations are then ṗσ = Fσ, or

Tσσ′ q̈σ′ +

(
∂Tσσ′

∂qσ′′
− 1

2

∂Tσ′σ′′

∂qσ

)
q̇σ′ q̇σ′′ = − ∂U

∂qσ
(10.5)

which is a set of coupled nonlinear second order ODEs. Here we are using the Einstein
‘summation convention’, where we automatically sum over any and all repeated indices.
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10.2 Expansion about Static Equilibrium

Small oscillation theory begins with the identification of a static equilibrium {q̄1, . . . , q̄n},
which satisfies the n nonlinear equations

∂U

∂qσ

∣∣∣∣
q=q̄

= 0 . (10.6)

Once an equilibrium is found (note that there may be more than one static equilibrium),
we expand about this equilibrium, writing

qσ ≡ q̄σ + ησ . (10.7)

The coordinates {η1, . . . , ηn} represent the displacements relative to equilibrium.

We next expand the Lagrangian to quadratic order in the generalized displacements, yielding

L = 1
2 Tσσ′ η̇σ η̇σ′ − 1

2Vσσ′ ησησ′ , (10.8)

where

Tσσ′ =
∂2T

∂q̇σ ∂q̇σ′

∣∣∣∣∣
q=q̄

, Vσσ′ =
∂2U

∂qσ ∂qσ′

∣∣∣∣∣
q=q̄

. (10.9)

Writing ηt for the row-vector (η1, . . . , ηn), we may suppress indices and write

L = 1
2 η̇

t T η̇ − 1
2 η

t V η , (10.10)

where T and V are the constant matrices of eqn. 10.9.

10.3 Method of Small Oscillations

The idea behind the method of small oscillations is to effect a coordinate transformation
from the generalized displacements η to a new set of coordinates ξ, which render the
Lagrangian particularly simple. All that is required is a linear transformation,

ησ = Aσi ξi , (10.11)

where both σ and i run from 1 to n. The n× n matrix Aσi is known as the modal matrix.

With the substitution η = A ξ (hence ηt = ξt At, where At
iσ = Aσi is the matrix transpose),

we have
L = 1

2 ξ̇
t At T A ξ̇ − 1

2 ξ
t At V A ξ . (10.12)

We now choose the matrix A such that

At T A = I (10.13)

At V A = diag
(
ω2

1 , . . . , ω
2
n

)
. (10.14)
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With this choice of A, the Lagrangian decouples:

L = 1
2

n∑

i=1

(
ξ̇2i − ω2

i ξ
2
i

)
, (10.15)

with the solution
ξi(t) = Ci cos(ωi t) +Di sin(ωi t) , (10.16)

where {C1, . . . , Cn} and {D1, . . . ,Dn} are 2n constants of integration, and where no sum is
implied on i. Note that

ξ = A−1η = AtTη . (10.17)

In terms of the original generalized displacements, the solution is

ησ(t) =

n∑

i=1

Aσi

{
Ci cos(ωit) +Di sin(ωit)

}
, (10.18)

and the constants of integration are linearly related to the initial generalized displacements
and generalized velocities:

Ci = At
iσ Tσσ′ ησ′(0) (10.19)

Di = ω−1
i At

iσ Tσσ′ η̇σ′(0) , (10.20)

again with no implied sum on i on the RHS of the second equation, and where we have
used A−1 = At T, from eqn. 10.13. (The implied sums in eqn. 10.20 are over σ and σ′.)

Note that the normal coordinates have unusual dimensions: [ξ] =
√
M ·L, where L is length

and M is mass.

10.3.1 Can you really just choose an A so that both these wonderful
things happen in 10.13 and 10.14?

Yes.

10.3.2 Er...care to elaborate?

Both T and V are symmetric matrices. Aside from that, there is no special relation between
them. In particular, they need not commute, hence they do not necessarily share any
eigenvectors. Nevertheless, they may be simultaneously diagonalized as per 10.13 and 10.14.
Here’s why:

• Since T is symmetric, it can be diagonalized by an orthogonal transformation. That
is, there exists a matrix O1 ∈ O(n) such that

Ot
1 TO1 = Td , (10.21)

where Td is diagonal.
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• We may safely assume that T is positive definite. Otherwise the kinetic energy can
become arbitrarily negative, which is unphysical. Therefore, one may form the matrix

T
−1/2
d which is the diagonal matrix whose entries are the inverse square roots of the

corresponding entries of Td. Consider the linear transformation O1 T
−1/2
d . Its effect

on T is

T
−1/2
d Ot

1 TO1 T
−1/2
d = 1 . (10.22)

• Since O1 and Td are wholly derived from T, the only thing we know about

Ṽ ≡ T
−1/2
d Ot

1 VO1 T
−1/2
d (10.23)

is that it is explicitly a symmetric matrix. Therefore, it may be diagonalized by some
orthogonal matrix O2 ∈ O(n). As T has already been transformed to the identity, the
additional orthogonal transformation has no effect there. Thus, we have shown that
there exist orthogonal matrices O1 and O2 such that

Ot
2 T

−1/2
d Ot

1 TO1 T
−1/2
d O2 = 1 (10.24)

Ot
2 T

−1/2
d Ot

1 VO1 T
−1/2
d O2 = diag (ω2

1, . . . , ω
2
n) . (10.25)

All that remains is to identify the modal matrix A = O1 T
−1/2
d O2.

Note that it is not possible to simultaneously diagonalize three symmetric matrices in gen-
eral.

10.3.3 Finding the modal matrix

While the above proof allows one to construct A by finding the two orthogonal matrices O1

and O2, such a procedure is extremely cumbersome. It would be much more convenient if
A could be determined in one fell swoop. Fortunately, this is possible.

We start with the equations of motion, T η̈ + V η = 0. In component notation, we have

Tσσ′ η̈σ′ + Vσσ′ ησ′ = 0 . (10.26)

We now assume that η(t) oscillates with a single frequency ω, i.e. ησ(t) = ψσ e−iωt. This

results in a set of linear algebraic equations for the components ψσ:

(
ω2 Tσσ′ −Vσσ′

)
ψσ′ = 0 . (10.27)

These are n equations in n unknowns: one for each value of σ = 1, . . . , n. Because the
equations are homogeneous and linear, there is always a trivial solution ψ = 0. In fact one
might think this is the only solution, since

(
ω2 T−V

)
ψ = 0

?
=⇒ ψ =

(
ω2 T−V

)−1
0 = 0 . (10.28)
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However, this fails when the matrix ω2 T−V is defective1, i.e. when

det
(
ω2 T−V

)
= 0 . (10.29)

Since T and V are of rank n, the above determinant yields an nth order polynomial in ω2,
whose n roots are the desired squared eigenfrequencies {ω2

1 , . . . , ω
2
n}.

Once the n eigenfrequencies are obtained, the modal matrix is constructed as follows. Solve
the equations

n∑

σ′=1

(
ω2
i Tσσ′ −Vσσ′

)
ψ

(i)
σ′ = 0 (10.30)

which are a set of (n − 1) linearly independent equations among the n components of the
eigenvector ψ(i). That is, there are n equations (σ = 1, . . . , n), but one linear dependency
since det (ω2

i T−V) = 0. The eigenvectors may be chosen to satisfy a generalized orthogo-
nality relationship,

ψ(i)
σ Tσσ′ ψ

(j)
σ′ = δij . (10.31)

To see this, let us duplicate eqn. 10.30, replacing i with j, and multiply both equations as
follows:

ψ(j)
σ ×

(
ω2
i Tσσ′ −Vσσ′

)
ψ

(i)
σ′ = 0 (10.32)

ψ(i)
σ ×

(
ω2
j Tσσ′ −Vσσ′

)
ψ

(j)
σ′ = 0 . (10.33)

Using the symmetry of T and V, upon subtracting these equations we obtain

(ω2
i − ω2

j )

n∑

σ,σ′=1

ψ(i)
σ Tσσ′ ψ

(j)
σ′ = 0 , (10.34)

where the sums on i and j have been made explicit. This establishes that eigenvectors ψ(i)

and ψ(j) corresponding to distinct eigenvalues ω2
i 6= ω2

j are orthogonal: (ψ(i))t Tψ(j) = 0.
For degenerate eigenvalues, the eigenvectors are not a priori orthogonal, but they may be
orthogonalized via application of the Gram-Schmidt procedure. The remaining degrees of
freedom - one for each eigenvector – are fixed by imposing the condition of normalization:

ψ(i)
σ → ψ(i)

σ

/√
ψ

(i)
µ Tµµ′ ψ

(i)
µ′ =⇒ ψ(i)

σ Tσσ′ ψ
(j)
σ′ = δij . (10.35)

The modal matrix is just the matrix of eigenvectors: Aσi = ψ
(i)
σ .

With the eigenvectors ψ
(i)
σ thusly normalized, we have

0 = ψ(i)
σ

(
ω2
j Tσσ′ −Vσσ′

)
ψ

(j)
σ′

= ω2
j δij − ψ(i)

σ Vσσ′ ψ
(j)
σ′ , (10.36)

with no sum on j. This establishes the result

At V A = diag
(
ω2

1 , . . . , ω
2
n

)
. (10.37)

1The label defective has a distastefully negative connotation. In modern parlance, we should instead refer
to such a matrix as determinantally challenged .
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10.4 Example: Masses and Springs

Two blocks and three springs are configured as in Fig. 17.6. All motion is horizontal. When
the blocks are at rest, all springs are unstretched.

Figure 10.1: A system of masses and springs.

(a) Choose as generalized coordinates the displacement of each block from its equilibrium
position, and write the Lagrangian.

(b) Find the T and V matrices.

(c) Suppose

m1 = 2m , m2 = m , k1 = 4k , k2 = k , k3 = 2k ,

Find the frequencies of small oscillations.

(d) Find the normal modes of oscillation.

(e) At time t = 0, mass #1 is displaced by a distance b relative to its equilibrium position.

I.e. x1(0) = b. The other initial conditions are x2(0) = 0, ẋ1(0) = 0, and ẋ2(0) = 0.

Find t∗, the next time at which x2 vanishes.

Solution

(a) The Lagrangian is

L = 1
2m1 ẋ

2
1 + 1

2m2 ẋ
2
2 − 1

2k1 x
2
1 − 1

2k2 (x2 − x1)
2 − 1

2k3 x
2
2

(b) The T and V matrices are

Tij =
∂2T

∂ẋi ∂ẋj
=

(
m1 0

0 m2

)
, Vij =

∂2U

∂xi ∂xj
=

(
k1 + k2 −k2

−k2 k2 + k3

)
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(c) We have m1 = 2m, m2 = m, k1 = 4k, k2 = k, and k3 = 2k. Let us write ω2 ≡ λω2
0 ,

where ω0 ≡
√
k/m. Then

ω2T−V = k

(
2λ− 5 1

1 λ− 3

)
.

The determinant is

det (ω2T−V) = (2λ2 − 11λ + 14) k2

= (2λ− 7) (λ − 2) k2 .

There are two roots: λ− = 2 and λ+ = 7
2 , corresponding to the eigenfrequencies

ω− =

√
2k

m
, ω+ =

√
7k

2m

(d) The normal modes are determined from (ω2
aT−V) ~ψ(a) = 0. Plugging in λ = 2 we have

for the normal mode ~ψ(−)

(
−1 1
1 −1

)(
ψ(−)

1

ψ(−)

2

)
= 0 ⇒ ~ψ(−) = C−

(
1
1

)

Plugging in λ = 7
2 we have for the normal mode ~ψ(+)

(
2 1
1 1

2

)(
ψ(+)

1

ψ(+)

2

)
= 0 ⇒ ~ψ(+) = C+

(
1
−2

)

The standard normalization ψ
(a)
i Tij ψ

(b)
j = δab gives

C− =
1√
3m

, C+ =
1√
6m

. (10.38)

(e) The general solution is
(
x1

x2

)
= A

(
1
1

)
cos(ω−t) +B

(
1
−2

)
cos(ω+t) + C

(
1
1

)
sin(ω−t) +D

(
1
−2

)
sin(ω+t) .

The initial conditions x1(0) = b, x2(0) = ẋ1(0) = ẋ2(0) = 0 yield

A = 2
3b , B = 1

3b , C = 0 , D = 0 .

Thus,

x1(t) = 1
3b ·

(
2 cos(ω−t) + cos(ω+t)

)

x2(t) = 2
3b ·

(
cos(ω−t)− cos(ω+t)

)
.
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Figure 10.2: The double pendulum.

Setting x2(t
∗) = 0, we find

cos(ω−t
∗) = cos(ω+t

∗) ⇒ π − ω−t = ω+t− π ⇒ t∗ =
2π

ω− + ω+

10.5 Example: Double Pendulum

As a second example, consider the double pendulum, with m1 = m2 = m and ℓ1 = ℓ2 = ℓ.
The kinetic and potential energies are

T = mℓ2θ̇2
1 +mℓ2 cos(θ1 − θ1) θ̇1θ̇2 + 1

2mℓ
2θ̇2

2 (10.39)

V = −2mgℓ cos θ1 −mgℓ cos θ2 , (10.40)

leading to

T =

(
2mℓ2 mℓ2

mℓ2 mℓ2

)
, V =

(
2mgℓ 0

0 mgℓ

)
. (10.41)

Then

ω2T−V = mℓ2
(

2ω2 − 2ω2
0 ω2

ω2 ω2 − ω2
0

)
, (10.42)

with ω0 =
√
g/ℓ. Setting the determinant to zero gives

2(ω2 − ω2
0)

2 − ω4 = 0 ⇒ ω2 = (2±
√

2)ω2
0 . (10.43)
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We find the unnormalized eigenvectors by setting (ω2
i T− V )ψ(i) = 0. This gives

ψ+ = C+

(
1

−
√

2

)
, ψ− = C−

(
1

+
√

2

)
, (10.44)

where C± are constants. One can check Tσσ′ ψ
(i)
σ ψ

(j)
σ′ vanishes for i 6= j. We then normalize

by demanding Tσσ′ ψ
(i)
σ ψ

(i)
σ′ = 1 (no sum on i), which determines the coefficients C± =

1
2

√
(2±

√
2)/mℓ2. Thus, the modal matrix is

A =



ψ+

1 ψ−
1

ψ+
2 ψ−

2


 =

1

2
√
mℓ2




√
2 +
√

2
√

2−
√

2

−
√

4 + 2
√

2 +
√

4− 2
√

2


 . (10.45)

10.6 Zero Modes

Recall Noether’s theorem, which says that for every continuous one-parameter family of
coordinate transformations,

qσ −→ q̃σ(q, ζ) , q̃σ(q, ζ = 0) = qσ , (10.46)

which leaves the Lagrangian invariant, i.e. dL/dζ = 0, there is an associated conserved
quantity,

Λ =
∑

σ

∂L

∂q̇σ

∂q̃σ
∂ζ

∣∣∣∣∣
ζ=0

satisfies
dΛ

dt
= 0 . (10.47)

For small oscillations, we write qσ = q̄σ + ησ, hence

Λk =
∑

σ

Ckσ η̇σ , (10.48)

where k labels the one-parameter families (in the event there is more than one continuous
symmetry), and where

Ckσ =
∑

σ′

Tσσ′
∂q̃σ′

∂ζk

∣∣∣∣∣
ζ=0

. (10.49)

Therefore, we can define the (unnormalized) normal mode

ξk =
∑

σ

Ckσ ησ , (10.50)

which satisfies ξ̈k = 0. Thus, in systems with continuous symmetries, to each such contin-
uous symmetry there is an associated zero mode of the small oscillations problem, i.e. a
mode with ω2

k = 0.
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Figure 10.3: Coupled oscillations of three masses on a frictionless hoop of radius R. All
three springs have the same force constant k, but the masses are all distinct.

10.6.1 Example of zero mode oscillations

The simplest example of a zero mode would be a pair of masses m1 and m2 moving fric-
tionlessly along a line and connected by a spring of force constant k. We know from our
study of central forces that the Lagrangian may be written

L = 1
2m1ẋ

2
1 + 1

2m2ẋ
2
2 − 1

2k(x1 − x2)
2

= 1
2MẊ2 + 1

2µẋ
2 − 1

2kx
2 , (10.51)

where X = (m1x1 + m2x2)/(m1 + m2) is the center of mass position, x = x1 − x2 is the

relative coordinate, M = m1 + m2 is the total mass, and µ = m1m2/(m1 + m2) is the
reduced mass. The relative coordinate obeys ẍ = −ω2

0 x, where the oscillation frequency is

ω0 =
√
k/µ. The center of mass coordinate obeys Ẍ = 0, i.e. its oscillation frequency is

zero. The center of mass motion is a zero mode.

Another example is furnished by the system depicted in fig. 10.3, where three distinct masses
m1, m2, and m3 move around a frictionless hoop of radius R. The masses are connected to
their neighbors by identical springs of force constant k. We choose as generalized coordinates
the angles φσ (σ = 1, 2, 3), with the convention that

φ1 ≤ φ2 ≤ φ3 ≤ 2π + φ1 . (10.52)

Let Rχ be the equilibrium length for each of the springs. Then the potential energy is

U = 1
2kR

2
{

(φ2 − φ1 − χ)2 + (φ3 − φ2 − χ)2 + (2π + φ1 − φ3 − χ)2
}

= 1
2kR

2
{

(φ2 − φ1)
2 + (φ3 − φ2)

2 + (2π + φ1 − φ3)
2 + 3χ2 − 4πχ

}
. (10.53)
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Note that the equilibrium angle χ enters only in an additive constant to the potential
energy. Thus, for the calculation of the equations of motion, it is irrelevant. It doesn’t
matter whether or not the equilibrium configuration is unstretched (χ = 2π/3) or not
(χ 6= 2π/3).

The kinetic energy is simple:

T = 1
2R

2
(
m1 φ̇

2
1 +m2 φ̇

2
2 +m3 φ̇

2
3

)
. (10.54)

The T and V matrices are then

T =



m1R

2 0 0

0 m2R
2 0

0 0 m3R
2


 , V =




2kR2 −kR2 −kR2

−kR2 2kR2 −kR2

−kR2 −kR2 2kR2


 . (10.55)

We then have

ω2 T−V = kR2




ω2

Ω2
1
− 2 1 1

1 ω2

Ω2
2
− 2 1

1 1 ω2

Ω2
3
− 2


 . (10.56)

We compute the determinant to find the characteristic polynomial:

P (ω) = det(ω2 T−V) (10.57)

=
ω6

Ω2
1 Ω

2
2 Ω

2
3

− 2

(
1

Ω2
1 Ω

2
2

+
1

Ω2
2 Ω

2
3

+
1

Ω2
1 Ω

2
3

)
ω4 + 3

(
1

Ω2
1

+
1

Ω2
2

+
1

Ω2
3

)
ω2 ,

where Ω2
i ≡ k/mi. The equation P (ω) = 0 yields a cubic equation in ω2, but clearly ω2 is

a factor, and when we divide this out we obtain a quadratic equation. One root obviously
is ω2

1 = 0. The other two roots are solutions to the quadratic equation:

ω2
2,3 = Ω2

1 +Ω2
2 +Ω2

3 ±
√

1
2

(
Ω2

1 −Ω2
2

)2
+ 1

2

(
Ω2

2 −Ω2
3

)2
+ 1

2

(
Ω2

1 −Ω2
3

)2
. (10.58)

To find the eigenvectors and the modal matrix, we set



ω2
j

Ω2
1
− 2 1 1

1
ω2

j

Ω2
2
− 2 1

1 1
ω2

j

Ω2
3
− 2






ψ

(j)
1

ψ
(j)
2

ψ
(j)
3


 = 0 , (10.59)

Writing down the three coupled equations for the components of ψ(j), we find
(
ω2
j

Ω2
1

− 3

)
ψ

(j)
1 =

(
ω2
j

Ω2
2

− 3

)
ψ

(j)
2 =

(
ω2
j

Ω2
3

− 3

)
ψ

(j)
3 . (10.60)

We therefore conclude

ψ(j) = Cj




(
ω2

j

Ω2
1
− 3
)−1

(
ω2

j

Ω2
2
− 3
)−1

(
ω2

j

Ω2
3
− 3
)−1




. (10.61)
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The normalization condition ψ
(i)
σ Tσσ′ ψ

(j)
σ′ = δij then fixes the constants Cj:

[
m1

(
ω2
j

Ω2
1

− 3

)−2

+ m2

(
ω2
j

Ω2
2

− 3

)−2

+ m3

(
ω2
j

Ω2
3

− 3

)−2
]
∣∣Cj
∣∣2 = 1 . (10.62)

The Lagrangian is invariant under the one-parameter family of transformations

φσ −→ φσ + ζ (10.63)

for all σ = 1, 2, 3. The associated conserved quantity is

Λ =
∑

σ

∂L

∂φ̇σ

∂φ̃σ
∂ζ

= R2
(
m1 φ̇1 +m2 φ̇2 +m3 φ̇3

)
, (10.64)

which is, of course, the total angular momentum relative to the center of the ring. Thus,
from Λ̇ = 0 we identify the zero mode as ξ1, where

ξ1 = C
(
m1φ 1 +m2 φ2 +m3φ 3

)
, (10.65)

where C is a constant. Recall the relation ησ = Aσi ξi between the generalized displacements

ησ and the normal coordinates ξi. We can invert this relation to obtain

ξi = A−1
iσ ησ = At

iσ Tσσ′ ησ′ . (10.66)

Here we have used the result At T A = 1 to write

A−1 = At T . (10.67)

This is a convenient result, because it means that if we ever need to express the normal
coordinates in terms of the generalized displacements, we don’t have to invert any matrices
– we just need to do one matrix multiplication. In our case here, the T matrix is diagonal,
so the multiplication is trivial. From eqns. 10.65 and 10.66, we conclude that the matrix
At T must have a first row which is proportional to (m1,m2,m3). Since these are the very
diagonal entries of T, we conclude that At itself must have a first row which is proportional
to (1, 1, 1), which means that the first column of A is proportional to (1, 1, 1). But this is

confirmed by eqn. 10.60 when we take j = 1, since ω2
j=1 = 0: ψ

(1)
1 = ψ

(1)
2 = ψ

(1)
3 .

10.7 Chain of Mass Points

Next consider an infinite chain of identical masses, connected by identical springs of spring
constant k and equilibrium length a. The Lagrangian is

L = 1
2m
∑

n

ẋ2
n − 1

2k
∑

n

(xn+1 − xn − a)2

= 1
2m
∑

n

u̇2
n − 1

2k
∑

n

(un+1 − un)2 , (10.68)
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where un ≡ xn−na− b is the displacement from equilibrium of the nth mass. The constant
b is arbitrary. The Euler-Lagrange equations are

d

dt

(
∂L

∂u̇n

)
= mün =

∂L

∂un

= k(un+1 − un)− k(un − un−1)

= k(un+1 + un−1 − 2un) . (10.69)

Now let us assume that the system is placed on a large ring of circumference Na, where
N ≫ 1. Then un+N = un and we may shift to Fourier coefficients,

un =
1√
N

∑

q

eiqan ûq (10.70)

ûq =
1√
N

∑

n

e−iqan un , (10.71)

where qj = 2πj/Na, and both sums are over the set j, n ∈ {1, . . . , N}. Expressed in terms

of the {ûq}, the equations of motion become

¨̂uq =
1√
N

∑

n

e−iqna ün

=
k

m

1√
N

∑

n

e−iqan (un+1 + un−1 − 2un)

=
k

m

1√
N

∑

n

e−iqan (e−iqa + e+iqa − 2)un

= −2k

m
sin2

(
1
2qa
)
ûq (10.72)

Thus, the {ûq} are the normal modes of the system (up to a normalization constant), and
the eigenfrequencies are

ωq =
2k

m

∣∣ sin
(

1
2qa
)∣∣ . (10.73)

This means that the modal matrix is

Anq =
1√
Nm

eiqan , (10.74)

where we’ve included the 1√
m

factor for a proper normalization. (The normal modes them-

selves are then ξq = A†
qnTnn′un′ =

√
mûq. For complex A, the normalizations are A†TA = I

and A†VA = diag(ω2
1 , . . . , ω

2
N ).

Note that

Tnn′ = mδn,n′ (10.75)

Vnn′ = 2k δn,n′ − k δn,n′+1 − k δn,n′−1 (10.76)
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and that

(A†TA)qq′ =

N∑

n=1

N∑

n′=1

A∗
nqTnn′An′q′

=
1

Nm

N∑

n=1

N∑

n′=1

e−iqanmδnn′ e
iq′an′

=
1

N

N∑

n=1

ei(q
′−q)an = δqq′ , (10.77)

and

(A†VA)qq′ =

N∑

n=1

N∑

n′=1

A∗
nqTnn′An′q′

=
1

Nm

N∑

n=1

N∑

n′=1

e−iqan
(
2k δn,n′ − k δn,n′+1 − k δn,n′−1

)
eiq

′an′

=
k

m

1

N

N∑

n=1

ei(q
′−q)an (2− e−iq′a − eiq′a

)

=
4k

m
sin2

(
1
2qa
)
δqq′ = ω2

q δqq′ (10.78)

Since x̂q+G = x̂q, where G = 2π
a , we may choose any set of q values such that no two are

separated by an integer multiple of G. The set of points {jG} with j ∈ Z is called the
reciprocal lattice. For a linear chain, the reciprocal lattice is itself a linear chain2. One
natural set to choose is q ∈

[
− π

a ,
π
a

]
. This is known as the first Brillouin zone of the

reciprocal lattice.

Finally, we can write the Lagrangian itself in terms of the {uq}. One easily finds

L = 1
2 m

∑

q

˙̂u
∗
q

˙̂uq − k
∑

q

(1− cos qa) û∗q ûq , (10.79)

where the sum is over q in the first Brillouin zone. Note that

û−q = û−q+G = û∗q . (10.80)

This means that we can restrict the sum to half the Brillouin zone:

L = 1
2m

∑

q∈[0,π
a
]

{
˙̂u
∗
q

˙̂uq −
4k

m
sin2

(
1
2qa
)
û∗q ûq

}
. (10.81)

2For higher dimensional Bravais lattices, the reciprocal lattice is often different than the real space
(“direct”) lattice. For example, the reciprocal lattice of a face-centered cubic structure is a body-centered
cubic lattice.



10.7. CHAIN OF MASS POINTS 187

Now ûq and û∗q may be regarded as linearly independent, as one regards complex variables
z and z∗. The Euler-Lagrange equation for û∗q gives

d

dt

(
∂L

∂ ˙̂u
∗
q

)
=

∂L

∂û∗q
⇒ ¨̂uq = −ω2

q ûq . (10.82)

Extremizing with respect to ûq gives the complex conjugate equation.

10.7.1 Continuum limit

Let us take N →∞, a→ 0, with L0 = Na fixed. We’ll write

un(t) −→ u(x = na, t) (10.83)

in which case

T = 1
2m
∑

n

u̇2
n −→ 1

2m

∫
dx

a

(
∂u

∂t

)2

(10.84)

V = 1
2k
∑

n

(un+1 − un)2 −→ 1
2k

∫
dx

a

(
u(x+ a)− u(x)

a

)2

a2 (10.85)

Recognizing the spatial derivative above, we finally obtain

L =

∫
dxL(u, ∂tu, ∂xu)

L = 1
2 µ

(
∂u

∂t

)2

− 1
2 τ

(
∂u

∂x

)2

, (10.86)

where µ = m/a is the linear mass density and τ = ka is the tension3. The quantity L is
the Lagrangian density ; it depends on the field u(x, t) as well as its partial derivatives ∂tu
and ∂xu

4. The action is

S
[
u(x, t)

]
=

tb∫

ta

dt

xb∫

xa

dxL(u, ∂tu, ∂xu) , (10.87)

where {xa, xb} are the limits on the x coordinate. Setting δS = 0 gives the Euler-Lagrange
equations

∂L
∂u
− ∂

∂t

(
∂L

∂ (∂tu)

)
− ∂

∂x

(
∂L

∂ (∂xu)

)
= 0 . (10.88)

For our system, this yields the Helmholtz equation,

1

c2
∂2u

∂t2
=
∂2u

∂x2
, (10.89)

3For a proper limit, we demand µ and τ be neither infinite nor infinitesimal.
4L may also depend explicitly on x and t.
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where c =
√
τ/µ is the velocity of wave propagation. This is a linear equation, solutions of

which are of the form
u(x, t) = C eiqx e−iωt , (10.90)

where
ω = cq . (10.91)

Note that in the continuum limit a → 0, the dispersion relation derived for the chain
becomes

ω2
q =

4k

m
sin2

(
1
2qa
)
−→ ka2

m
q2 = c2 q2 , (10.92)

and so the results agree.

10.8 Appendix I : General Formulation

In the development in section 10.1, we assumed that the kinetic energy T is a homogeneous
function of degree 2, and the potential energy U a homogeneous function of degree 0, in
the generalized velocities q̇σ. However, we’ve encountered situations where this is not so:
problems with time-dependent holonomic constraints, such as the mass point on a rotating
hoop, and problems involving charged particles moving in magnetic fields. The general
Lagrangian is of the form

L = 1
2 T2 σσ′(q) q̇σ q̇σ′ + T1σ(q) q̇σ + T0(q)− U1σ(q) q̇σ − U0(q) , (10.93)

where the subscript 0, 1, or 2 labels the degree of homogeneity of each term in the generalized
velocities. The generalized momenta are then

pσ =
∂L

∂q̇σ
= T2σσ′ q̇σ′ + T1σ − U1σ (10.94)

and the generalized forces are

Fσ =
∂L

∂qσ
=
∂(T0 − U0)

∂qσ
+
∂(T1 σ′ − U1σ′)

∂qσ
q̇σ′ +

1

2

∂T2 σ′σ′′

∂qσ
q̇σ′ q̇σ′′ , (10.95)

and the equations of motion are again ṗσ = Fσ. Once we solve

In equilibrium, we seek a time-independent solution of the form qσ(t) = q̄σ. This entails

∂

∂qσ

∣∣∣∣∣
q=q̄

(
U0(q)− T0(q)

)
= 0 , (10.96)

which give us n equations in the n unknowns (q1, . . . , qn). We then write qσ = q̄σ + ησ and

expand in the notionally small quantities ησ. It is important to understand that we assume
η and all of its time derivatives as well are small. Thus, we can expand L to quadratic order
in (η, η̇) to obtain

L = 1
2 Tσσ′ η̇σ η̇σ′ − 1

2 Bσσ′ ησ η̇σ′ − 1
2 Vσσ′ ησ ησ′ , (10.97)
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where

Tσσ′ = T2 σσ′(q̄) , Vσσ′ =
∂2
(
U0 − T0

)

∂qσ ∂qσ′

∣∣∣∣∣
q=q̄

, Bσσ′ = 2
∂
(
U1 σ′ − T1σ′

)

∂qσ

∣∣∣∣∣
q=q̄

. (10.98)

Note that the T and V matrices are symmetric. The Bσσ′ term is new.

Now we can always write B = 1
2 (Bs+Ba) as a sum over symmetric and antisymmetric parts,

with Bs = B + Bt and Ba = B− Bt. Since,

Bs
σσ′ ησ η̇σ′ =

d

dt

(
1
2 Bs

σσ′ ησ ησ′
)
, (10.99)

any symmetric part to B contributes a total time derivative to L, and thus has no effect on
the equations of motion. Therefore, we can project B onto its antisymmetric part, writing

Bσσ′ =

(
∂
(
U1σ′ − T1σ′

)

∂qσ
− ∂

(
U1σ − T1σ

)

∂qσ′

)

q=q̄

. (10.100)

We now have

pσ =
∂L

∂η̇σ
= Tσσ′ η̇σ′ + 1

2 Bσσ′ ησ′ , (10.101)

and

Fσ =
∂L

∂ησ
= −1

2 Bσσ′ η̇σ′ −Vσσ′ ησ′ . (10.102)

The equations of motion, ṗσ = Fσ, then yield

Tσσ′ η̈σ′ + Bσσ′ η̇σ′ + Vσσ′ ησ′ = 0 . (10.103)

Let us write η(t) = η e−iωt. We then have

(
ω2 T + iω B−V

)
η = 0 . (10.104)

To solve eqn. 10.104, we set P (ω) = 0, where P (ω) = det
[
Q(ω)

]
, with

Q(ω) ≡ ω2 T + iω B−V . (10.105)

Since T, B, and V are real-valued matrices, and since det(M) = det(M t) for any matrix
M , we can use Bt = −B to obtain P (−ω) = P (ω) and P (ω∗) =

[
P (ω)

]∗
. This establishes

that if P (ω) = 0, i.e. if ω is an eigenfrequency, then P (−ω) = 0 and P (ω∗) = 0, i.e. −ω
and ω∗ are also eigenfrequencies (and hence −ω∗ as well).
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10.9 Appendix II : Additional Examples

10.9.1 Right Triatomic Molecule

A molecule consists of three identical atoms located at the vertices of a 45◦ right triangle.
Each pair of atoms interacts by an effective spring potential, with all spring constants equal
to k. Consider only planar motion of this molecule.

(a) Find three ‘zero modes’ for this system (i.e. normal modes whose associated eigenfre-
quencies vanish).

(b) Find the remaining three normal modes.

Solution

It is useful to choose the following coordinates:

(X1, Y1) = (x1 , y1) (10.106)

(X2, Y2) = (a+ x2 , y2) (10.107)

(X3, Y3) = (x3 , a+ y3) . (10.108)

The three separations are then

d12 =

√
(a+ x2 − x1)

2 + (y2 − y1)
2

= a+ x2 − x1 + . . . (10.109)

d23 =

√
(−a+ x3 − x2)

2 + (a+ y3 − y2)
2

=
√

2 a− 1√
2

(
x3 − x2

)
+ 1√

2

(
y3 − y2

)
+ . . . (10.110)

d13 =

√
(x3 − x1)

2 + (a+ y3 − y1)
2

= a+ y3 − y1 + . . . . (10.111)

The potential is then

U = 1
2k
(
d12 − a

)2
+ 1

2k
(
d23 −

√
2 a
)2

+ 1
2k
(
d13 − a

)2
(10.112)

= 1
2k
(
x2 − x1

)2
+ 1

4k
(
x3 − x2

)2
+ 1

4k
(
y3 − y2

)2

− 1
2k
(
x3 − x2

)(
y3 − y2

)
+ 1

2k
(
y3 − y1

)2
(10.113)



10.9. APPENDIX II : ADDITIONAL EXAMPLES 191

Defining the row vector

ηt ≡
(
x1 , y1 , x2 , y2 , x3 , y3

)
, (10.114)

we have that U is a quadratic form:

U = 1
2ησVσσ′ησ′ = 1

2η
t V η, (10.115)

with

V = Vσσ′ =
∂2U

∂qσ ∂qσ′

∣∣∣∣
eq.

= k




1 0 −1 0 0 0

0 1 0 0 0 −1

−1 0 3
2 −1

2 −1
2

1
2

0 0 −1
2

1
2

1
2 −1

2

0 0 −1
2

1
2

1
2 −1

2

0 −1 1
2 −1

2 −1
2

3
2




(10.116)

The kinetic energy is simply

T = 1
2m
(
ẋ2

1 + ẏ2
1 + ẋ2

2 + ẏ2
2 + ẋ2

3 + ẏ2
3

)
, (10.117)

which entails
Tσσ′ = mδσσ′ . (10.118)

(b) The three zero modes correspond to x-translation, y-translation, and rotation. Their
eigenvectors, respectively, are

ψ1 =
1√
3m




1
0
1
0
1
0




, ψ2 =
1√
3m




0
1
0
1
0
1




, ψ3 =
1

2
√

3m




1
−1
1
2
−2
−1




. (10.119)

To find the unnormalized rotation vector, we find the CM of the triangle, located at
(
a
3 ,

a
3

)
,

and sketch orthogonal displacements ẑ × (Ri −RCM) at the position of mass point i.

(c) The remaining modes may be determined by symmetry, and are given by

ψ4 =
1

2
√
m




−1
−1
0
1
1
0




, ψ5 =
1

2
√
m




1
−1
−1
0
0
1




, ψ6 =
1

2
√

3m




−1
−1
2
−1
−1
2




, (10.120)
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Figure 10.4: Normal modes of the 45◦ right triangle. The yellow circle is the location of the
CM of the triangle.

with

ω1 =

√
k

m
, ω2 =

√
2k

m
, ω3 =

√
3k

m
. (10.121)

Since T = m·1 is a multiple of the unit matrix, the orthogonormality relation ψai Tij ψ
b
j = δab

entails that the eigenvectors are mutually orthogonal in the usual dot product sense, with
ψa ·ψb = m−1 δab. One can check that the eigenvectors listed here satisfy this condition.

The simplest of the set {ψ4,ψ5,ψ6} to find is the uniform dilation ψ6, sometimes called
the ‘breathing’ mode. This must keep the triangle in the same shape, which means that
the deviations at each mass point are proportional to the distance to the CM. Next, it is
simplest to find ψ4, in which the long and short sides of the triangle oscillate out of phase.
Finally, the mode ψ5 must be orthogonal to all the remaining modes. No heavy lifting (e.g.
Mathematica) is required!

10.9.2 Triple Pendulum

Consider a triple pendulum consisting of three identical masses m and three identical rigid
massless rods of length ℓ, as depicted in Fig. 10.5.

(a) Find the T and V matrices.

(b) Find the equation for the eigenfrequencies.
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Figure 10.5: The triple pendulum.

(c) Numerically solve the eigenvalue equation for ratios ω2
a/ω

2
0 , where ω0 =

√
g/ℓ. Find the

three normal modes.

Solution

The Cartesian coordinates for the three masses are

x1 = ℓ sin θ1 y1 = −ℓ cos θ1

x2 = ℓ sin θ1 + ℓ sin θ2 y2 = −ℓ cos θ1 − ℓ cos θ2

x3 = ℓ sin θ1 + ℓ sin θ2 + ℓ sin θ3 y3 = −ℓ cos θ1 − ℓ cos θ2 − ℓ cos θ3 .

By inspection, we can write down the kinetic energy:

T = 1
2m
(
ẋ2

1 + ẏ2
1 + ẋ2

2 + ẏ2
2 + ẋ3

3 + ẏ2
3

)

= 1
2mℓ2

{
3 θ̇2

1 + 2 θ̇2
2 + θ̇2

3 + 4 cos(θ1 − θ2) θ̇1 θ̇2

+ 2 cos(θ1 − θ3) θ̇1 θ̇3 + 2 cos(θ2 − θ3) θ̇2 θ̇3
}

The potential energy is

U = −mgℓ
{

3 cos θ1 + 2 cos θ2 + cos θ3

}
,

and the Lagrangian is L = T − U :

L = 1
2mℓ2

{
3 θ̇2

1 + 2 θ̇2
2 + θ̇2

3 + 4 cos(θ1 − θ2) θ̇1 θ̇2 + 2 cos(θ1 − θ3) θ̇1 θ̇3
+ 2 cos(θ2 − θ3) θ̇2 θ̇3

}
+mgℓ

{
3 cos θ1 + 2 cos θ2 + cos θ3

}
.
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The canonical momenta are given by

π1 =
∂L

∂θ̇1
= mℓ2

{
3 θ̇1 + 2 θ̇2 cos(θ1 − θ2) + θ̇3 cos(θ1 − θ3)

}

π2 =
∂L

∂θ̇2
= mℓ2

{
2 θ̇2 + 2 θ̇1 cos(θ1 − θ2) + θ̇3 cos(θ2 − θ3)

}

π3 =
∂L

∂θ̇2
= mℓ2

{
θ̇3 + θ̇1 cos(θ1 − θ3) + θ̇2 cos(θ2 − θ3)

}
.

The only conserved quantity is the total energy, E = T + U .

(a) As for the T and V matrices, we have

Tσσ′ =
∂2T

∂θσ ∂θσ′

∣∣∣∣
θ=0

= mℓ2




3 2 1
2 2 1
1 1 1




and

Vσσ′ =
∂2U

∂θσ ∂θσ′

∣∣∣∣
θ=0

= mgℓ




3 0 0
0 2 0
0 0 1


 .

(b) The eigenfrequencies are roots of the equation det (ω2 T−V) = 0. Defining ω0 ≡
√
g/ℓ,

we have

ω2 T−V = mℓ2




3(ω2 − ω2
0) 2ω2 ω2

2ω2 2(ω2 − ω2
0) ω2

ω2 ω2 (ω2 − ω2
0)




and hence

det (ω2T−V) = 3(ω2 − ω2
0) ·
[
2(ω2 − ω2

0)
2 − ω4

]
− 2ω2 ·

[
2ω2(ω2 − ω2

0)− ω4
]

+ ω2 ·
[
2ω4 − 2ω2(ω2 − ω2

0)
]

= 6 (ω2 − ω2
0)

3 − 9ω4 (ω2 − ω2
0) + 4ω6

= ω6 − 9ω2
0 ω

4 + 18ω4
0 ω

2 − 6ω6
0 .

(c) The equation for the eigenfrequencies is

λ3 − 9λ2 + 18λ− 6 = 0 , (10.122)

where ω2 = λω2
0. This is a cubic equation in λ. Numerically solving for the roots, one finds

ω2
1 = 0.415774ω2

0 , ω2
2 = 2.29428ω2

0 , ω2
3 = 6.28995ω2

0 . (10.123)

I find the (unnormalized) eigenvectors to be

ψ1 =




1
1.2921
1.6312


 , ψ2 =




1
0.35286
−2.3981


 , ψ3 =




1
−1.6450
0.76690


 . (10.124)
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10.9.3 Equilateral Linear Triatomic Molecule

Consider the vibrations of an equilateral triangle of mass points, depicted in figure 10.6 .
The system is confined to the (x, y) plane, and in equilibrium all the strings are unstretched
and of length a.

Figure 10.6: An equilateral triangle of identical mass points and springs.

(a) Choose as generalized coordinates the Cartesian displacements (xi, yi) with respect to
equilibrium. Write down the exact potential energy.

(b) Find the T and V matrices.

(c)There are three normal modes of oscillation for which the corresponding eigenfrequencies
all vanish: ωa = 0. Write down these modes explicitly, and provide a physical interpretation
for why ωa = 0. Since this triplet is degenerate, there is no unique answer – any linear
combination will also serve as a valid ‘zero mode’. However, if you think physically, a
natural set should emerge.

(d) The three remaining modes all have finite oscillation frequencies. They correspond to
distortions of the triangular shape. One such mode is the “breathing mode” in which the
triangle uniformly expands and contracts. Write down the eigenvector associated with this
normal mode and compute its associated oscillation frequency.

(e) The fifth and sixth modes are degenerate. They must be orthogonal (with respect to
the inner product defined by T) to all the other modes. See if you can figure out what these
modes are, and compute their oscillation frequencies. As in (a), any linear combination of
these modes will also be an eigenmode.

(f) Write down your full expression for the modal matrix Aai, and check that it is correct
by using Mathematica.
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Figure 10.7: Zero modes of the mass-spring triangle.

Solution

Choosing as generalized coordinates the Cartesian displacements relative to equilibrium, we
have the following:

#1 :
(
x1, y1

)

#2 :
(
a+ x2, y2

)

#3 :
(

1
2a+ x3,

√
3

2 a+ y3

)
.

Let dij be the separation of particles i and j. The potential energy of the spring connecting

them is then 1
2 k (dij − a)2.

d2
12 =

(
a+ x2 − x1

)2
+
(
y2 − y1

)2

d2
23 =

(
− 1

2a+ x3 − x2

)2
+
(√

3
2 a+ y3 − y2

)2

d2
13 =

(
1
2a+ x3 − x1

)2
+
(√

3
2 a+ y3 − y1

)2
.

The full potential energy is

U = 1
2 k
(
d12 − a

)2
+ 1

2 k
(
d23 − a

)2
+ 1

2 k
(
d13 − a

)2
. (10.125)

This is a cumbersome expression, involving square roots.

To find T and V, we need to write T and V as quadratic forms, neglecting higher order
terms. Therefore, we must expand dij − a to linear order in the generalized coordinates.
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Figure 10.8: Finite oscillation frequency modes of the mass-spring triangle.

This results in the following:

d12 = a+
(
x2 − x1

)
+ . . .

d23 = a− 1
2

(
x3 − x2

)
+

√
3

2

(
y3 − y2

)
+ . . .

d13 = a+ 1
2

(
x3 − x1

)
+

√
3

2

(
y3 − y1

)
+ . . . .

Thus,

U = 1
2 k
(
x2 − x1

)2
+ 1

8 k
(
x2 − x3 −

√
3 y2 +

√
3 y3

)2

+ 1
8 k
(
x3 − x1 +

√
3 y3 −

√
3 y1

)2
+ higher order terms .

Defining (
q1, q2, q3, q4, q5, q6

)
=
(
x1, y1, x2, y2, x3, y3

)
,

we may now read off

Vσσ′ =
∂2U

∂qσ ∂qσ′

∣∣∣∣
q̄

= k




5/4
√

3/4 −1 0 −1/4 −√
3/4

√
3/4 3/4 0 0 −√

3/4 −3/4

−1 0 5/4 −√
3/4 −1/4

√
3/4

0 0 −√
3/4 3/4

√
3/4 −3/4

−1/4 −√
3/4 −1/4

√
3/4 1/2 0

−√
3/4 −3/4

√
3/4 −3/4 0 3/2




The T matrix is trivial. From

T = 1
2m
(
ẋ2

1 + ẏ2
1 + ẋ2

2 + ẏ2
2 + ẋ2

3 + ẏ2
3

)
.
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Figure 10.9: John Henry, statue by Charles O. Cooper (1972). “Now the man that invented
the steam drill, he thought he was mighty fine. But John Henry drove fifteen feet, and the
steam drill only made nine.” - from The Ballad of John Henry.

we obtain

Tij =
∂2T

∂q̇i ∂q̇j
= mδij ,

and T = m · I is a multiple of the unit matrix.

The zero modes are depicted graphically in figure 10.7. Explicitly, we have

ξx =
1√
3m




1

0

1

0

1

0




, ξy =
1√
3m




0

1

0

1

0

1




, ξrot =
1√
3m




1/2

−√
3/2

1/2
√

3/2

−1

0




.

That these are indeed zero modes may be verified by direct multiplication:

V ξx.y = V ξrot = 0 . (10.126)

The three modes with finite oscillation frequency are depicted graphically in figure 10.8.
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Explicitly, we have

ξA =
1√
3m




−1/2

−
√

3/2

−1/2
√

3/2

1

0




, ξB =
1√
3m




−
√

3/2

1/2
√

3/2

1/2

0

−1




, ξdil =
1√
3m




−
√

3/2

−1/2
√

3/2

−1/2

0

1




.

The oscillation frequencies of these modes are easily checked by multiplying the eigenvectors
by the matrix V. Since T = m · I is diagonal, we have V ξa = mω2

a ξa. One finds

ωA = ωB =

√
3k

2m
, ωdil =

√
3k

m
.

Mathematica? I don’t need no stinking Mathematica.

10.10 Aside : Christoffel Symbols

The coupled equations in eqn. 10.5 may be written in the form

q̈σ + Γσµν q̇µ q̇ν = Fσ , (10.127)

with

Γσµν = 1
2 T

−1
σα

(
∂Tαµ
∂qν

+
∂Tαν
∂qµ

− ∂Tµν
∂qα

)
(10.128)

and

Fσ = −T−1
σα

∂U

∂qα
. (10.129)

The components of the rank-three tensor Γσαβ are known as Christoffel symbols, in the case

where Tµν(q) defines a metric on the space of generalized coordinates.
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Chapter 11

Elastic Collisions

11.1 Center of Mass Frame

A collision or ‘scattering event’ is said to be elastic if it results in no change in the internal
state of any of the particles involved. Thus, no internal energy is liberated or captured in
an elastic process.

Consider the elastic scattering of two particles. Recall the relation between laboratory
coordinates {r1, r2} and the CM and relative coordinates {R, r}:

R =
m1r1 +m2r2

m1 +m2
r1 = R+

m2

m1 +m2
r (11.1)

r = r1 − r2 r2 = R− m1

m1 +m2
r (11.2)

If external forces are negligible, the CM momentum P = MṘ is constant, and therefore the
frame of reference whose origin is tied to the CM position is an inertial frame of reference.
In this frame,

vCM
1 =

m2 v

m1 +m2

, vCM
2 = − m1 v

m1 +m2

, (11.3)

where v = v1 − v2 = vCM
1 − vCM

2 is the relative velocity, which is the same in both L and
CM frames. Note that the CM momenta satisfy

pCM
1 = m1v

CM
1 = µv (11.4)

pCM
2 = m2v

CM
2 = −µv , (11.5)

where µ = m1m2/(m1 + m2) is the reduced mass. Thus, pCM
1 + pCM

2 = 0 and the total
momentum in the CM frame is zero. We may then write

pCM
1 ≡ p0n̂ , pCM

2 ≡ −p0n̂ ⇒ ECM =
p2
0

2m1
+

p2
0

2m2
=
p2
0

2µ
. (11.6)
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Figure 11.1: The scattering of two hard spheres of radii a and b The scattering angle is χ.

The energy is evaluated when the particles are asymptotically far from each other, in which
case the potential energy is assumed to be negligible. After the collision, energy and mo-
mentum conservation require

p′1
CM ≡ p0n̂

′ , p′2
CM ≡ −p0n̂

′ ⇒ E′CM
= ECM =

p2
0

2µ
. (11.7)

The angle between n and n′ is the scattering angle χ:

n · n′ ≡ cosχ . (11.8)

The value of χ depends on the details of the scattering process, i.e. on the interaction
potential U(r). As an example, consider the scattering of two hard spheres, depicted in
Fig. 11.1. The potential is

U(r) =

{
∞ if r ≤ a+ b

0 if r > a+ b .
(11.9)

Clearly the scattering angle is χ = π − 2φ0, where φ0 is the angle between the initial
momentum of either sphere and a line containing their two centers at the moment of contact.

There is a simple geometric interpretation of these results, depicted in Fig. 11.2. We have

p1 = m1V + p0n̂ p′1 = m1V + p0n̂
′ (11.10)

p2 = m2V − p0n̂ p′2 = m2V − p0n̂
′ . (11.11)

So draw a circle of radius p0 whose center is the origin. The vectors p0n̂ and p0n̂
′ must

both lie along this circle. We define the angle ψ between V and n:

V̂ · n = cosψ . (11.12)
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Figure 11.2: Scattering of two particles of masses m1 and m2. The scattering angle χ is the
angle between n̂ and n̂′.

It is now an exercise in geometry, using the law of cosines, to determine everything of
interest in terms of the quantities V , v, ψ, and χ. For example, the momenta are

p1 =

√
m2

1 V
2 + µ2v2 + 2m1µV v cosψ (11.13)

p′1 =

√
m2

1 V
2 + µ2v2 + 2m1µV v cos(χ− ψ) (11.14)

p2 =

√
m2

2 V
2 + µ2v2 − 2m2µV v cosψ (11.15)

p′2 =

√
m2

2 V
2 + µ2v2 − 2m2µV v cos(χ− ψ) , (11.16)

and the scattering angles are

θ1 = tan−1

(
µv sinψ

µv cosψ +m1V

)
+ tan−1

(
µv sin(χ− ψ)

µv cos(χ− ψ) +m1V

)
(11.17)

θ2 = tan−1

(
µv sinψ

µv cosψ −m2V

)
+ tan−1

(
µv sin(χ− ψ)

µv cos(χ− ψ)−m2V

)
. (11.18)
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Figure 11.3: Scattering when particle 2 is initially at rest.

If particle 2, say, is initially at rest, the situation is somewhat simpler. In this case, V =
m1V /(m1 +m2) and m2V = µv, which means the point B lies on the circle in Fig. 11.3

(m1 6= m2) and Fig. 11.4 (m1 = m2). Let ϑ1,2 be the angles between the directions of
motion after the collision and the direction V of impact. The scattering angle χ is the
angle through which particle 1 turns in the CM frame. Clearly

tan ϑ1 =
sinχ

m1
m2

+ cosχ
, ϑ2 = 1

2(π − χ) . (11.19)

We can also find the speeds v′1 and v′2 in terms of v and χ, from

p′1
2

= p2
0 +

(
m1
m2

p0

)2 − 2 m1
m2

p2
0 cos(π − χ) (11.20)

and
p2
2 = 2 p2

0 (1− cosχ) . (11.21)

These equations yield

v′1 =

√
m2

1 +m2
2 + 2m1m2 cosχ

m1 +m2
v , v′2 =

2m1v

m1 +m2
sin(1

2χ) . (11.22)

Figure 11.4: Scattering of identical mass particles when particle 2 is initially at rest.
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Figure 11.5: Repulsive (A,C) and attractive (B,D) scattering in the lab (A,B) and CM
(C,D) frames, assuming particle 2 starts from rest in the lab frame. (From Barger and
Olsson.)

The angle ϑmax from Fig. 11.3(b) is given by sinϑmax = m2
m1

. Note that when m1 = m2

we have ϑ1 + ϑ2 = π. A sketch of the orbits in the cases of both repulsive and attractive
scattering, in both the laboratory and CM frames, in shown in Fig. 11.5.

11.2 Central Force Scattering

Consider a single particle of mass µ movng in a central potential U(r), or a two body central
force problem in which µ is the reduced mass. Recall that

dr

dt
=
dφ

dt
· dr
dφ

=
ℓ

µr2
· dr
dφ

, (11.23)

and therefore

E = 1
2µṙ

2 +
ℓ2

2µr2
+ U(r)

=
ℓ2

2µr4

(
dr

dφ

)2
+

ℓ2

2µr2
+ U(r) . (11.24)

Solving for dr
dφ , we obtain

dr

dφ
= ±

√
2µr4

ℓ2
(
E − U(r)

)
− r2 , (11.25)
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Figure 11.6: Scattering in the CM frame. O is the force center and P is the point of
periapsis. The impact parameter is b, and χ is the scattering angle. φ0 is the angle through
which the relative coordinate moves between periapsis and infinity.

Consulting Fig. 11.6, we have that

φ0 =
ℓ√
2µ

∞∫

rp

dr

r2
√
E − Ueff(r)

, (11.26)

where rp is the radial distance at periapsis, and where

Ueff(r) =
ℓ2

2µr2
+ U(r) (11.27)

is the effective potential, as before. From Fig. 11.6, we conclude that the scattering angle
is

χ =
∣∣π − 2φ0

∣∣ . (11.28)

It is convenient to define the impact parameter b as the distance of the asymptotic trajectory
from a parallel line containing the force center. The geometry is shown again in Fig. 11.6.
Note that the energy and angular momentum, which are conserved, can be evaluated at
infinity using the impact parameter:

E = 1
2µv

2
∞ , ℓ = µv∞b . (11.29)

Substituting for ℓ(b), we have

φ0(E, b) =

∞∫

rp

dr

r2
b√

1− b2

r2 −
U(r)
E

, (11.30)

In physical applications, we are often interested in the deflection of a beam of incident
particles by a scattering center. We define the differential scattering cross section dσ by

dσ =
# of particles scattered into solid angle dΩ per unit time

incident flux
. (11.31)
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Figure 11.7: Geometry of hard sphere scattering.

Now for particles of a given energy E there is a unique relationship between the scattering
angle χ and the impact parameter b, as we have just derived in eqn. 11.30. The differential
solid angle is given by dΩ = 2π sinχdχ, hence

dσ

dΩ
=

b

sinχ

∣∣∣∣
db

dχ

∣∣∣∣ =
∣∣∣∣
d (1

2b
2)

d cosχ

∣∣∣∣ . (11.32)

Note that dσ
dΩ has dimensions of area. The integral of dσ

dΩ over all solid angle is the total

scattering cross section,

σT = 2π

π∫

0

dχ sinχ
dσ

dΩ
. (11.33)

11.2.1 Hard sphere scattering

Consider a point particle scattering off a hard sphere of radius a, or two hard spheres of
radii a1 and a2 scattering off each other, with a ≡ a1 + a2. From the geometry of Fig. 11.7,

we have b = a sinφ0 and φ0 = 1
2(π − χ), so

b2 = a2 sin2
(

1
2π − 1

2χ) = 1
2a

2 (1 + cosχ) . (11.34)

We therefore have

dσ

dΩ
=
d (1

2b
2)

d cos χ
= 1

4 a
2 (11.35)

and σT = πa2. The total scattering cross section is simply the area of a sphere of radius a
projected onto a plane perpendicular to the incident flux.
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11.2.2 Rutherford scattering

Consider scattering by the Kepler potential U(r) = −k
r . We assume that the orbits are

unbound, i.e. they are Keplerian hyperbolae with E > 0, described by the equation

r(φ) =
a (ε2 − 1)

±1 + ε cosφ
⇒ cosφ0 = ± 1

ε
. (11.36)

Recall that the eccentricity is given by

ε2 = 1 +
2Eℓ2

µk2
= 1 +

(
µbv∞
k

)2
. (11.37)

We then have

(
µbv∞
k

)2
= ε2 − 1

= sec2φ0 − 1 = tan2φ0 = ctn2
(

1
2χ
)
. (11.38)

Therefore

b(χ) =
k

µv2∞
ctn
(

1
2χ
)

(11.39)

We finally obtain

dσ

dΩ
=
d (1

2b
2)

d cos χ
=

1

2

(
k

µv2∞

)2 d ctn2
(

1
2χ
)

d cosχ

=
1

2

(
k

µv2∞

)2 d

d cosχ

(
1 + cosχ

1− cosχ

)

=

(
k

2µv2∞

)2
csc4

(
1
2χ
)
, (11.40)

which is the same as
dσ

dΩ
=

(
k

4E

)2
csc4

(
1
2χ
)
. (11.41)

Since dσ
dΩ ∝ χ−4 as χ → 0, the total cross section σT diverges! This is a consequence of

the long-ranged nature of the Kepler/Coulomb potential. In electron-atom scattering, the
Coulomb potential of the nucleus is screened by the electrons of the atom, and the 1/r
behavior is cut off at large distances.

11.2.3 Transformation to laboratory coordinates

We previously derived the relation

tan ϑ =
sinχ

γ + cosχ
, (11.42)
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where ϑ ≡ ϑ1 is the scattering angle for particle 1 in the laboratory frame, and γ = m1
m2

is the ratio of the masses. We now derive the differential scattering cross section in the
laboratory frame. To do so, we note that particle conservation requires

(
dσ

dΩ

)

L

· 2π sinϑ dϑ =

(
dσ

dΩ

)

CM

· 2π sinχdχ , (11.43)

which says (
dσ

dΩ

)

L

=

(
dσ

dΩ

)

CM

· d cosχ

d cos ϑ
. (11.44)

From

cos ϑ =
1√

1 + tan2ϑ

=
γ + cosχ√

1 + γ2 + 2γ cosχ
, (11.45)

we derive
d cos ϑ

d cosχ
=

1 + γ cosχ
(
1 + γ2 + 2γ cosχ

)3/2 (11.46)

and, accordingly,
(
dσ

dΩ

)

L

=

(
1 + γ2 + 2γ cosχ

)3/2

1 + γ cosχ
·
(
dσ

dΩ

)

CM

. (11.47)
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Chapter 12

Noninertial Reference Frames

12.1 Accelerated Coordinate Systems

A reference frame which is fixed with respect to a rotating rigid body is not inertial. The
parade example of this is an observer fixed on the surface of the earth. Due to the rotation of
the earth, such an observer is in a noninertial frame, and there are corresponding corrections
to Newton’s laws of motion which must be accounted for in order to correctly describe
mechanical motion in the observer’s frame. As is well known, these corrections involve
fictitious centrifugal and Coriolis forces.

Consider an inertial frame with a fixed set of coordinate axes êµ, where µ runs from 1 to
d, the dimension of space. Any vector A may be written in either basis:

A =
∑

µ

Aµ êµ =
∑

µ

A′
µ ê

′
µ , (12.1)

where Aµ = A · êµ and A′
µ = A · ê′µ are projections onto the different coordinate axes. We

may now write
(
dA

dt

)

inertial

=
∑

µ

dAµ
dt

êµ

=
∑

i

dA′
µ

dt
ê′µ +

∑

i

A′
µ

dê′µ
dt

. (12.2)

The first term on the RHS is (dA/dt)body, the time derivative of A along body-fixed axes,
i.e. as seen by an observer rotating with the body. But what is dê′i/dt? Well, we can always
expand it in the {ê′i} basis:

dê′µ =
∑

j

dΩµν ê
′
ν ⇐⇒ dΩµν ≡ dê′µ · ê′ν . (12.3)

Note that dΩµν = −dΩνµ is antisymmetric, because

0 = d
(
ê′µ · ê′ν

)
= dΩνµ + dΩµν , (12.4)
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Figure 12.1: Reference frames related by both translation and rotation.

because ê′µ · ê′ν = δµν is a constant. Now we may define dΩ12 ≡ dΩ3, et cyc., so that

dΩµν =
∑

σ

ǫµνσ dΩσ , ωσ ≡
dΩσ

dt
, (12.5)

which yields
dê′µ
dt

= ω × ê′µ . (12.6)

Finally, we obtain the important result

(
dA

dt

)

inertial

=

(
dA

dt

)

body

+ ω ×A (12.7)

which is valid for any vector A.

Applying this result to the position vector r, we have
(
dr

dt

)

inertial

=

(
dr

dt

)

body

+ ω × r . (12.8)

Applying it twice,

(
d2r

dt2

)

inertial

=

(
d

dt

∣∣∣∣
body

+ ω ×
)(

d

dt

∣∣∣∣
body

+ ω ×
)
r (12.9)

=

(
d2r

dt2

)

body

+
dω

dt
× r + 2ω ×

(
dr

dt

)

body

+ω × (ω × r) .

Note that dω/dt appears with no “inertial” or “body” label. This is because, upon invoking
eq. 12.7, (

dω

dt

)

inertial

=

(
dω

dt

)

body

+ ω × ω , (12.10)
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and since ω×ω = 0, inertial and body-fixed observers will agree on the value of ω̇inertial =

ω̇body ≡ ω̇.

12.1.1 Translations

Suppose that frame K moves with respect to an inertial frame K0, such that the origin of
K lies at R(t). Suppose further that frame K ′ rotates with respect to K, but shares the
same origin (see Fig. 12.1). Consider the motion of an object lying at position ρ relative
to the origin of K0, and r relative to the origin of K/K ′. Thus,

ρ = R+ r , (12.11)

and
(
dρ

dt

)

inertial

=

(
dR

dt

)

inertial

+

(
dr

dt

)

body

+ ω × r (12.12)

(
d2ρ

dt2

)

inertial

=

(
d2R

dt2

)

inertial

+

(
d2r

dt2

)

body

+
dω

dt
× r (12.13)

+ 2ω ×
(
dr

dt

)

body

+ ω × (ω × r) .

Here, ω is the angular velocity in the frame K or K ′.

12.1.2 Motion on the surface of the earth

The earth both rotates about its axis and orbits the Sun. If we add the infinitesimal effects
of the two rotations,

dr1 = ω1 × r dt
dr2 = ω2 × (r + dr1) dt

dr = dr1 + dr2

= (ω1 + ω2) dt × r +O
(
(dt)2

)
. (12.14)

Thus, infinitesimal rotations add. Dividing by dt, this means that

ω =
∑

i

ωi , (12.15)

where the sum is over all the rotations. For the earth, ω = ωrot + ωorb.

• The rotation about earth’s axis, ωrot has magnitude ωrot = 2π/(1 day) = 7.29 ×
10−5 s−1. The radius of the earth is Re = 6.37 × 103 km.
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• The orbital rotation about the Sun, ωorb has magnitude ωorb = 2π/(1 yr) = 1.99 ×
10−7 s−1. The radius of the earth is ae = 1.50 × 108 km.

Thus, ωrot/ωorb = Torb/Trot = 365.25, which is of course the number of days (i.e. rotational
periods) in a year (i.e. orbital period). There is also a very slow precession of the earth’s
axis of rotation, the period of which is about 25,000 years, which we will ignore. Note ω̇ = 0
for the earth. Thus, applying Newton’s second law and then invoking eq. 12.14, we arrive
at

m

(
d2r

dt2

)

earth

= F (tot) −m
(
d2R

dt2

)

Sun

− 2mω ×
(
dr

dt

)

earth

− mω × (ω × r) , (12.16)

where ω = ωrot +ωorb, and where R̈Sun is the acceleration of the center of the earth around
the Sun, assuming the Sun-fixed frame to be inertial. The force F (tot) is the total force on
the object, and arises from three parts: (i) gravitational pull of the Sun, (ii) gravitational
pull of the earth, and (iii) other earthly forces, such as springs, rods, surfaces, electric fields,
etc.

On the earth’s surface, the ratio of the Sun’s gravity to the earth’s is

F⊙
Fe

=
GM⊙m
a2

e

/
GMem

R2
e

=
M⊙
Me

(
Re

ae

)2

≈ 6.02 × 10−4 . (12.17)

In fact, it is clear that the Sun’s field precisely cancels with the term m R̈Sun at the earth’s
center, leaving only gradient contributions of even lower order, i.e. multiplied by Re/ae ≈
4.25 × 10−5. Thus, to an excellent approximation, we may neglect the Sun entirely and
write

d2r

dt2
=
F ′

m
+ g − 2ω × dr

dt
−ω × (ω × r) (12.18)

Note that we’ve dropped the ‘earth’ label here and henceforth. We define g = −GMe r̂/r
2,

the acceleration due to gravity; F ′ is the sum of all earthly forces other than the earth’s
gravity. The last two terms on the RHS are corrections to mr̈ = F due to the noninertial
frame of the earth, and are recognized as the Coriolis and centrifugal acceleration terms,
respectively.

12.2 Spherical Polar Coordinates

The locally orthonormal triad {r̂, θ̂, φ̂} varies with position. In terms of the body-fixed
triad {x̂, ŷ, ẑ}, we have

r̂ = sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ (12.19)

θ̂ = cos θ cosφ x̂+ cos θ sinφ ŷ − sin θ ẑ (12.20)

φ̂ = − sinφ x̂+ cosφ ŷ . (12.21)
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Figure 12.2: The locally orthonormal triad {r̂, θ̂, φ̂}.

Inverting the relation between the triads {r̂, θ̂, φ̂} and {x̂, ŷ, ẑ}, we obtain

x̂ = sin θ cosφ r̂ + cos θ cosφ θ̂ − sinφ φ̂ (12.22)

ŷ = sin θ sinφ r̂ + cos θ sinφ θ̂ + cosφ φ̂ (12.23)

ẑ = cos θ r̂ − sin θ θ̂ . (12.24)

The differentials of these unit vectors are

dr̂ = θ̂ dθ + sin θ φ̂ dφ (12.25)

dθ̂ = −r̂ dθ + cos θ φ̂ dφ (12.26)

dφ̂ = − sin θ r̂ dφ− cos θ θ̂ dφ . (12.27)

Thus,

ṙ =
d

dt

(
r r̂
)

= ṙ r̂ + r ˙̂r

= ṙ r̂ + rθ̇ θ̂ + r sin θ φ̇ φ̂ . (12.28)

If we differentiate a second time, we find, after some tedious accounting,

r̈ =
(
r̈ − r θ̇2 − r sin2θ φ̇2

)
r̂ +

(
2 ṙ θ̇ + r θ̈ − r sin θ cos θ φ̇2

)
θ̂

+
(
2 ṙ φ̇ sin θ + 2 r θ̇ φ̇ cos θ + r sin θ φ̈

)
φ̂ . (12.29)
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12.3 Centrifugal Force

One major distinction between the Coriolis and centrifugal forces is that the Coriolis force
acts only on moving particles, whereas the centrifugal force is present even when ṙ = 0.
Thus, the equation for stationary equilibrium on the earth’s surface is

mg + F ′ −mω × (ω × r) = 0 , (12.30)

involves the centrifugal term. We can write this as F ′ +mg̃ = 0, where

g̃ = −GMe r̂

r2
− ω × (ω × r) (12.31)

= −
(
g0 − ω2Re sin2 θ

)
r̂ + ω2 Re sin θ cos θ θ̂ , (12.32)

where g0 = GMe/R
2
e = 980 cm/s2. Thus, on the equator, g̃ = −

(
g0 − ω2Re

)
r̂, with

ω2Re ≈ 3.39 cm/s2, a small but significant correction. Thus, you weigh less on the equator.
Note also the term in g̃ along θ̂. This means that a plumb bob suspended from a general
point above the earth’s surface won’t point exactly toward the earth’s center. Moreover, if
the earth were replaced by an equivalent mass of fluid, the fluid would rearrange itself so
as to make its surface locally perpendicular to g̃. Indeed, the earth (and Sun) do exhibit
quadrupolar distortions in their mass distributions – both are oblate spheroids. In fact, the
observed difference g̃(θ = π

2 )− g̃(θ = 0) ≈ 5.2 cm/s2, which is 53% greater than the näıvely
expected value of 3.39 cm/s2. The earth’s oblateness enhances the effect.

12.3.1 Rotating tube of fluid

Consider a cylinder filled with a liquid, rotating with angular frequency ω about its sym-
metry axis ẑ. In steady state, the fluid is stationary in the rotating frame, and we may
write, for any given element of fluid

0 = f ′ + g − ω2 ẑ × (ẑ × r) , (12.33)

where f ′ is the force per unit mass on the fluid element. Now consider a fluid element on
the surface. Since there is no static friction to the fluid, any component of f ′ parallel to
the fluid’s surface will cause the fluid to flow in that direction. This contradicts the steady
state assumption. Therefore, we must have f ′ = f ′ n̂, where n̂ is the local unit normal
to the fluid surface. We write the equation for the fluid’s surface as z = z(ρ). Thus, with
r = ρ ρ̂+ z(ρ) ẑ, Newton’s second law yields

f ′ n̂ = g ẑ − ω2 ρ ρ̂ , (12.34)

where g = −g ẑ is assumed. From this, we conclude that the unit normal to the fluid surface
and the force per unit mass are given by

n̂(ρ) =
g ẑ − ω2 ρ ρ̂√
g2 + ω4 ρ2

, f ′(ρ) =
√
g2 + ω4ρ2 . (12.35)
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Figure 12.3: A rotating cylinder of fluid.

Now suppose r(ρ, φ) = ρ ρ̂+ z(ρ) ẑ is a point on the surface of the fluid. We have that

dr = ρ̂ dρ+ z′(ρ) ẑ dρ+ ρ φ̂ dφ , (12.36)

where z′ = dz
dρ , and where we have used dρ̂ = φ̂ dφ, which follows from eqn. 12.25 after

setting θ = π
2 . Now dr must lie along the surface, therefore n̂ · dr = 0, which says

g
dz

dρ
= ω2 ρ . (12.37)

Integrating this equation, we obtain the shape of the surface:

z(ρ) = z0 +
ω2ρ2

2g
. (12.38)

12.4 The Coriolis Force

The Coriolis force is given by FCor = −2mω × ṙ. According to (12.18), the acceleration
of a free particle (F ′ = 0) isn’t along g̃ – an orthogonal component is generated by the
Coriolis force. To actually solve the coupled equations of motion is difficult because the
unit vectors {r̂, θ̂, φ̂} change with position, and hence with time. The following standard
problem highlights some of the effects of the Coriolis and centrifugal forces.

PROBLEM: A cannonball is dropped from the top of a tower of height h located at a northerly
latitude of λ. Assuming the cannonball is initially at rest with respect to the tower, and
neglecting air resistance, calculate its deflection (magnitude and direction) due to (a) cen-
trifugal and (b) Coriolis forces by the time it hits the ground. Evaluate for the case h = 100
m, λ = 45◦. The radius of the earth is Re = 6.4× 106 m.

SOLUTION: The equation of motion for a particle near the earth’s surface is

r̈ = −2ω × ṙ − g0 r̂ − ω × (ω × r) , (12.39)
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where ω = ω ẑ, with ω = 2π/(24 hrs) = 7.3× 10−5 rad/s. Here, g0 = GMe/R
2
e = 980 cm/s2.

We use a locally orthonormal coordinate system {r̂, θ̂, φ̂} and write

r = x θ̂ + y φ̂+ (Re + z) r̂ , (12.40)

where Re = 6.4 × 106 m is the radius of the earth. Expressing ẑ in terms of our chosen
orthonormal triad,

ẑ = cos θ r̂ − sin θ θ̂ , (12.41)

where θ = π
2 − λ is the polar angle, or ‘colatitude’. Since the height of the tower and

the deflections are all very small on the scale of Re, we may regard the orthonormal triad
as fixed and time-independent. (In general, these unit vectors change as a function of r.)
Thus, we have ṙ ≃ ẋ θ̂ + ẏ φ̂+ ż r̂, and we find

ẑ × ṙ = −ẏ cos θ θ̂ + (ẋ cos θ + ż sin θ) φ̂− ẏ sin θ r̂ (12.42)

ω × (ω × r) = −ω2Re sin θ cos θ θ̂ − ω2Re sin2θ r̂ , (12.43)

where we neglect the O(z) term in the second equation, since z ≪ Re.

The equation of motion, written in components, is then

ẍ = 2ω cos θ ẏ + ω2Re sin θ cos θ (12.44)

ÿ = −2ω cos θ ẋ− 2ω sin θ ż (12.45)

z̈ = −g0 + 2ω sin θ ẏ + ω2Re sin2 θ . (12.46)

While these (inhomogeneous) equations are linear, they also are coupled, so an exact an-
alytical solution is not trivial to obtain (but see below). Fortunately, the deflections are
small, so we can solve this perturbatively. We write x = x(0) + δx, etc., and solve to lowest
order by including only the g0 term on the RHS. This gives z(0)(t) = z0 − 1

2g0 t
2, along

with x(0)(t) = y(0)(t) = 0. We then substitute this solution on the RHS and solve for the
deflections, obtaining

δx(t) = 1
2ω

2Re sin θ cos θ t2 (12.47)

δy(t) = 1
3ωg0 sin θ t3 (12.48)

δz(t) = 1
2ω

2Re sin2θ t2 . (12.49)

The deflection along θ̂ and r̂ is due to the centrifugal term, while that along φ̂ is due to
the Coriolis term. (At higher order, the two terms interact and the deflection in any given
direction can’t uniquely be associated to a single fictitious force.) To find the deflection of
an object dropped from a height h, solve z(0)(t∗) = 0 to obtain t∗ =

√
2h/g0 for the drop

time, and substitute. For h = 100m and λ = π
2 , find δx(t∗) = 17 cm south (centrifugal)

and δy(t∗) = 1.6 cm east (Coriolis).

In fact, an exact solution to (12.46) is readily obtained, via the following analysis. The
equations of motion may be written v̇ = 2iωJ v + b, or



v̇x
v̇y
v̇x


 = 2i ω

J︷ ︸︸ ︷


0 −i cos θ 0
i cos θ 0 i sin θ

0 −i sin θ 0






vx
vy
vx


+

b︷ ︸︸ ︷


g1 sin θ cos θ
0

−g0 + g1 sin2θ


 (12.50)
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with g1 ≡ ω2Re. Note that J † = J , i.e. J is a Hermitian matrix. The formal solution is

v(t) = e2iωJ t v(0) +

(
e2iωJ t − 1

2iω

)
J−1 b . (12.51)

When working with matrices, it is convenient to work in an eigenbasis. The characteristic
polynomial for J is P (λ) = det (λ · 1 − J ) = λ (λ2 − 1), hence the eigenvalues are λ1 = 0,

λ2 = +1, and λ3 = −1. The corresponding eigenvectors are easily found to be

ψ1 =




sin θ
0

− cos θ


 , ψ2 =

1√
2




cos θ
i

sin θ


 , ψ3 =

1√
2




cos θ
−i

sin θ


 . (12.52)

Note that ψ†
a · ψa′ = δaa′ .

Expanding v and b in this eigenbasis, we have v̇a = 2iωλava + ba, where va = ψ∗
ia vi and

ba = ψ∗
ia bi. The solution is

va(t) = va(0) e
2iλaωt +

(
e2iλaωt − 1

2iλaω

)
ba , (12.53)

which entails

vi(t) =

(
∑

a

ψia

(
e2iλaωt − 1

2iλaω

)
ψ∗
ja

)
bj , (12.54)

where we have taken v(0) = 0, i.e. the object is released from rest. Doing the requisite
matrix multiplications,



vx(t)

vy(t)

vz(t)


 =




t sin2θ + sin 2ωt
2ω cos2θ sin2ωt

ω cos θ −1
2t sin 2θ + sin 2ωt

4ω sin 2θ

− sin2ωt
ω cos θ sin 2ωt

2ω − sin2ωt
ω sin θ

−1
2t sin 2θ + sin 2ωt

4ω sin 2θ sin2ωt
ω sin θ t cos2θ + sin 2ωt

2ω sin2θ







g1 sin θ cos θ
0

−g0 + g1 sin2θ


 ,

(12.55)
which says

vx(t) =
(

1
2 sin 2θ + sin 2ωt

4ωt sin 2θ
)
· g0t+ sin 2ωt

4ωt sin 2θ · g1t

vy(t) = sin2ωt
ωt · g0t− sin2ωt

ωt sin θ · g1t (12.56)

vz(t) = −
(

cos2θ + sin2ωt
2ωt sin2θ

)
· g0t+ sin2ωt

2ωt · g1t .

Why is the deflection always to the east? The earth rotates eastward, and an object starting
from rest in the earth’s frame has initial angular velocity equal to that of the earth. To
conserve angular momentum, the object must speed up as it falls.
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Figure 12.4: Foucault’s pendulum.

12.4.1 Foucault’s pendulum

A pendulum swinging over one of the poles moves in a fixed inertial plane while the earth
rotates underneath. Relative to the earth, the plane of motion of the pendulum makes
one revolution every day. What happens at a general latitude? Assume the pendulum is
located at colatitude θ and longitude φ. Assuming the length scale of the pendulum is small
compared to Re, we can regard the local triad {θ̂, φ̂, r̂} as fixed. The situation is depicted
in Fig. 12.4. We write

r = x θ̂ + y φ̂+ z r̂ , (12.57)

with

x = ℓ sinψ cosα , y = ℓ sinψ sinα , z = ℓ (1− cosψ) . (12.58)

In our analysis we will ignore centrifugal effects, which are of higher order in ω, and we
take g = −g r̂. We also idealize the pendulum, and consider the suspension rod to be of
negligible mass.

The total force on the mass m is due to gravity and tension:

F = mg + T

=
(
− T sinψ cosα, −T sinψ sinα, T cosψ −mg

)

=
(
− Tx/ℓ, −Ty/ℓ, T −Mg − Tz/ℓ

)
. (12.59)
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The Coriolis term is

FCor = −2mω × ṙ (12.60)

= −2mω
(
cos θ r̂ − sin θ θ̂

)
×
(
ẋ θ̂ + ẏ φ̂+ ż r̂

)

= 2mω
(
ẏ cos θ, −ẋ cos θ − ż sin θ, ẏ sin θ

)
. (12.61)

The equations of motion are m r̈ = F + FCor:

mẍ = −Tx/ℓ+ 2mω cos θ ẏ (12.62)

mÿ = −Ty/ℓ− 2mω cos θ ẋ− 2mω sin θ ż (12.63)

mz̈ = T −mg − Tz/ℓ+ 2mω sin θ ẏ . (12.64)

These three equations are to be solved for the three unknowns x, y, and T . Note that

x2 + y2 + (ℓ− z)2 = ℓ2 , (12.65)

so z = z(x, y) is not an independent degree of freedom. This equation may be recast in the
form z = (x2 + y2 + z2)/2ℓ which shows that if x and y are both small, then z is at least of
second order in smallness. Therefore, we will approximate z ≃ 0, in which case ż may be
neglected from the second equation of motion. The third equation is used to solve for T :

T ≃ mg − 2mω sin θ ẏ . (12.66)

Adding the first plus i times the second then gives the complexified equation

ξ̈ = − T

mℓ
ξ − 2iω cos θ ξ̇

≈ −ω2
0 ξ − 2iω cos θ ξ̇ (12.67)

where ξ ≡ x + iy, and where ω0 =
√
g/ℓ. Note that we have approximated T ≈ mg in

deriving the second line.

It is now a trivial matter to solve the homogeneous linear ODE of eq. 12.67. Writing

ξ = ξ0 e
−iΩt (12.68)

and plugging in to find Ω, we obtain

Ω2 − 2ω⊥Ω − ω2
0 = 0 , (12.69)

with ω⊥ ≡ ω cos θ. The roots are

Ω± = ω⊥ ±
√
ω2

0 + ω2
⊥ , (12.70)

hence the most general solution is

ξ(t) = A+ e
−iΩ+t +A− e

−iΩ−t . (12.71)
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Finally, if we take as initial conditions x(0) = a, y(0) = 0, ẋ(0) = 0, and ẏ(0) = 0, we
obtain

x(t) =
(a
ν

)
·
{
ω⊥ sin(ω⊥t) sin(νt) + ν cos(ω⊥t) cos(νt)

}
(12.72)

y(t) =
(a
ν

)
·
{
ω⊥ cos(ω⊥t) sin(νt)− ν sin(ω⊥t) cos(νt)

}
, (12.73)

with ν =
√
ω2

0 + ω2
⊥. Typically ω0 ≫ ω⊥, since ω = 7.3 × 10−5 s−1. In the limit ω⊥ ≪ ω0,

then, we have ν ≈ ω0 and

x(t) ≃ a cos(ω⊥t) cos(ω0t) , y(t) ≃ −a sin(ω⊥t) cos(ω0t) , (12.74)

and the plane of motion rotates with angular frequency −ω⊥, i.e. the period is | sec θ | days.
Viewed from above, the rotation is clockwise in the northern hemisphere, where cos θ > 0
and counterclockwise in the southern hemisphere, where cos θ < 0.



Chapter 13

Rigid Body Motion and Rotational
Dynamics

13.1 Rigid Bodies

A rigid body consists of a group of particles whose separations are all fixed in magnitude. Six
independent coordinates are required to completely specify the position and orientation of a
rigid body. For example, the location of the first particle is specified by three coordinates. A
second particle requires only two coordinates since the distance to the first is fixed. Finally,
a third particle requires only one coordinate, since its distance to the first two particles
is fixed (think about the intersection of two spheres). The positions of all the remaining
particles are then determined by their distances from the first three. Usually, one takes
these six coordinates to be the center-of-mass position R = (X,Y,Z) and three angles
specifying the orientation of the body (e.g. the Euler angles).

As derived previously, the equations of motion are

P =
∑

i

mi ṙi , Ṗ = F (ext) (13.1)

L =
∑

i

mi ri × ṙi , L̇ = N (ext) . (13.2)

These equations determine the motion of a rigid body.

13.1.1 Examples of rigid bodies

Our first example of a rigid body is of a wheel rolling with constant angular velocity φ̇ = ω,
and without slipping, This is shown in Fig. 13.1. The no-slip condition is dx = Rdφ, so
ẋ = VCM = Rω. The velocity of a point within the wheel is

v = VCM + ω × r , (13.3)

223
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Figure 13.1: A wheel rolling to the right without slipping.

where r is measured from the center of the disk. The velocity of a point on the surface is
then given by v = ωR

(
x̂+ ω̂ × r̂).

As a second example, consider a bicycle wheel of massM and radius R affixed to a light, firm
rod of length d, as shown in Fig. 13.2. Assuming L lies in the (x, y) plane, one computes
the gravitational torque N = r × (Mg) = Mgd φ̂. The angular momentum vector then
rotates with angular frequency φ̇. Thus,

dφ =
dL

L
=⇒ φ̇ =

Mgd

L
. (13.4)

But L = MR2ω, so the precession frequency is

ωp = φ̇ =
gd

ωR2
. (13.5)

For R = d = 30 cm and ω/2π = 200 rpm, find ωp/2π ≈ 15 rpm. Note that we have here
ignored the contribution to L from the precession itself, which lies along ẑ, resulting in the
nutation of the wheel. This is justified if Lp/L = (d2/R2) · (ωp/ω)≪ 1.

13.2 The Inertia Tensor

Suppose first that a point within the body itself is fixed. This eliminates the translational
degrees of freedom from consideration. We now have

(
dr

dt

)

inertial

= ω × r , (13.6)
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Figure 13.2: Precession of a spinning bicycle wheel.

since ṙbody = 0. The kinetic energy is then

T = 1
2

∑

i

mi

(
dri
dt

)2

inertial

= 1
2

∑

i

mi (ω × ri) · (ω × ri)

= 1
2

∑

i

mi

[
ω2 r2

i − (ω · ri)2
]
≡ 1

2Iαβ ωα ωβ , (13.7)

where ωα is the component of ω along the body-fixed axis eα. The quantity Iαβ is the
inertia tensor,

Iαβ =
∑

i

mi

(
r2
i δαβ − ri,α ri,β

)
(13.8)

=

∫
ddr ̺(r)

(
r2 δαβ − rα rβ

)
(continuous media) . (13.9)

The angular momentum is

L =
∑

i

mi ri ×
(
dri
dt

)

inertial

=
∑

i

mi ri × (ω × ri) = Iαβ ωβ . (13.10)

The diagonal elements of Iαβ are called the moments of inertia, while the off-diagonal
elements are called the products of inertia.
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13.2.1 Coordinate transformations

Consider the basis transformation

ê′α = Rαβ êβ . (13.11)

We demand ê′α · ê′β = δαβ , which means R ∈ O(d) is an orthogonal matrix, i.e. Rt = R−1.

Thus the inverse transformation is eα = Rt
αβe

′
β . Consider next a general vector A = Aβ êβ .

Expressed in terms of the new basis {ê′α}, we have

A = Aβ

êβ︷ ︸︸ ︷
Rt
βα ê

′
α =

A′
α︷ ︸︸ ︷

RαβAβ ê′α (13.12)

Thus, the components of A transform as A′
α = Rαβ Aβ . This is true for any vector.

Under a rotation, the density ρ(r) must satisfy ρ′(r′) = ρ(r). This is the transformation
rule for scalars. The inertia tensor therefore obeys

I ′αβ =

∫
d3r′ ρ′(r′)

[
r′2 δαβ − r′α r′β

]

=

∫
d3r ρ(r)

[
r2 δαβ −

(
Rαµrµ

)(
Rβνrν

)]

= Rαµ Iµν Rt
νβ . (13.13)

I.e. I ′ = RIRt, the transformation rule for tensors. The angular frequency ω is a vector, so
ω′
α = Rαµ ωµ. The angular momentum L also transforms as a vector. The kinetic energy

is T = 1
2 ω

t · I · ω, which transforms as a scalar.

13.2.2 The case of no fixed point

If there is no fixed point, we can let r′ denote the distance from the center-of-mass (CM),
which will serve as the instantaneous origin in the body-fixed frame. We then adopt the
notation where R is the CM position of the rotating body, as observed in an inertial frame,
and is computed from the expression

R =
1

M

∑

i

mi ρi =
1

M

∫
d3r ρ(r) r , (13.14)

where the total mass is of course

M =
∑

i

mi =

∫
d3r ρ(r) . (13.15)

The kinetic energy and angular momentum are then

T = 1
2MṘ

2 + 1
2Iαβ ωα ωβ (13.16)

Lα = ǫαβγMRβṘγ + Iαβ ωβ , (13.17)

where Iαβ is given in eqs. 13.8 and 13.9, where the origin is the CM.
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Figure 13.3: Application of the parallel axis theorem to a cylindrically symmetric mass
distribution.

13.3 Parallel Axis Theorem

Suppose Iαβ is given in a body-fixed frame. If we displace the origin in the body-fixed frame

by d, then let Iαβ(d) be the inertial tensor with respect to the new origin. If, relative to
the origin at 0 a mass element lies at position r, then relative to an origin at d it will lie at
r − d. We then have

Iαβ(d) =
∑

i

mi

{
(r2
i − 2d · ri + d2) δαβ − (ri,α − dα)(ri,β − dβ)

}
. (13.18)

If ri is measured with respect to the CM, then
∑

i

mi ri = 0 (13.19)

and
Iαβ(d) = Iαβ(0) +M

(
d2δαβ − dαdβ

)
, (13.20)

a result known as the parallel axis theorem.

As an example of the theorem, consider the situation depicted in Fig. 13.3, where a cylin-
drically symmetric mass distribution is rotated about is symmetry axis, and about an axis
tangent to its side. The component Izz of the inertia tensor is easily computed when the
origin lies along the symmetry axis:

Izz =

∫
d3r ρ(r) (r2 − z2) = ρL · 2π

a∫

0

dr⊥ r
3
⊥

= π
2ρLa

4 = 1
2Ma2 , (13.21)



228 CHAPTER 13. RIGID BODY MOTION AND ROTATIONAL DYNAMICS

where M = πa2Lρ is the total mass. If we compute Izz about a vertical axis which is
tangent to the cylinder, the parallel axis theorem tells us that

I ′zz = Izz +Ma2 = 3
2Ma2 . (13.22)

Doing this calculation by explicit integration of
∫
dmr2⊥ would be tedious!

13.3.1 Example

Problem: Compute the CM and the inertia tensor for the planar right triangle of Fig.
13.4, assuming it to be of uniform two-dimensional mass density ρ.

Solution: The total mass is M = 1
2ρ ab. The x-coordinate of the CM is then

X =
1

M

a∫

0

dx

b(1−x
a
)∫

0

dy ρ x =
ρ

M

a∫

0

dx b
(
1− x

a

)
x

=
ρ a2b

M

1∫

0

duu(1− u) =
ρ a2b

6M
= 1

3 a . (13.23)

Clearly we must then have Y = 1
3 b, which may be verified by explicit integration.

We now compute the inertia tensor, with the origin at (0, 0, 0). Since the figure is planar,
z = 0 everywhere, hence Ixz = Izx = 0, Iyz = Izy = 0, and also Izz = Ixx + Iyy. We now
compute the remaining independent elements:

Ixx = ρ

a∫

0

dx

b(1−x
a
)∫

0

dy y2 = ρ

a∫

0

dx 1
3 b

3
(
1− x

a

)3

= 1
3ρ ab

3

1∫

0

du (1− u)3 = 1
12ρ ab

3 = 1
6Mb2 (13.24)

and

Ixy = −ρ
a∫

0

dx

b(1−x
a
)∫

0

dy x y = −1
2ρ b

2

a∫

0

dxx
(
1− x

a

)2

= −1
2ρ a

2b2
1∫

0

duu (1− u)2 = − 1
24ρ a

2b2 = − 1
12Mab . (13.25)

Thus,

I =
M

6




b2 −1
2ab 0

−1
2ab a2 0
0 0 a2 + b2


 . (13.26)
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Figure 13.4: A planar mass distribution in the shape of a triangle.

Suppose we wanted the inertia tensor relative in a coordinate system where the CM lies at
the origin. What we computed in eqn. 13.26 is I(d), with d = − a

3 x̂− b
3 ŷ. Thus,

d2δαβ − dα dβ =
1

9




b2 −ab 0
−ab a2 0
0 0 a2 + b2


 . (13.27)

Since
I(d) = ICM +M

(
d2δαβ − dα dβ

)
, (13.28)

we have that

ICM = I(d)−M
(
d2δαβ − dα dβ

)
(13.29)

=
M

18



b2 1

2ab 0
1
2ab a2 0
0 0 a2 + b2


 . (13.30)

13.3.2 General planar mass distribution

For a general planar mass distribution,

ρ(x, y, z) = σ(x, y) δ(z) , (13.31)

which is confined to the plane z = 0, we have

Ixx =

∫
dx

∫
dy σ(x, y) y2 (13.32)

Iyy =

∫
dx

∫
dy σ(x, y)x2 (13.33)

Ixy = −
∫
dx

∫
dy σ(x, y)xy (13.34)

and Izz = Ixx + Iyy, regardless of the two-dimensional mass distribution σ(x, y).
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13.4 Principal Axes of Inertia

We found that an orthogonal transformation to a new set of axes ê′α = Rαβ êβ entails

I ′ = RIRt for the inertia tensor. Since I = It is manifestly a symmetric matrix, it can
be brought to diagonal form by such an orthogonal transformation. To find R, follow this
recipe:

1. Find the diagonal elements of I ′ by setting P (λ) = 0, where

P (λ) = det
(
λ · 1− I

)
, (13.35)

is the characteristic polynomial for I, and 1 is the unit matrix.

2. For each eigenvalue λa, solve the d equations
∑

ν

Iµν ψ
a
ν = λa ψ

a
µ . (13.36)

Here, ψaµ is the µth component of the ath eigenvector. Since (λ · 1− I) is degenerate,
these equations are linearly dependent, which means that the first d− 1 components
may be determined in terms of the dth component.

3. Because I = It, eigenvectors corresponding to different eigenvalues are orthogonal.
In cases of degeneracy, the eigenvectors may be chosen to be orthogonal, e.g. via the
Gram-Schmidt procedure.

4. Due to the underdetermined aspect to step 2, we may choose an arbitrary normaliza-
tion for each eigenvector. It is conventional to choose the eigenvectors to be orthonor-
mal:

∑
µ ψ

a
µ ψ

b
µ = δab.

5. The matrix R is explicitly given by Raµ = ψaµ, the matrix whose row vectors are the
eigenvectors ψa. Of course Rt is then the corresponding matrix of column vectors.

6. The eigenvectors form a complete basis. The resolution of unity may be expressed as
∑

a

ψaµ ψ
a
ν = δµν . (13.37)

As an example, consider the inertia tensor for a general planar mass distribution, which is
of the form

I =



Ixx Ixy 0
Iyx Iyy 0
0 0 Izz


 , (13.38)

where Iyx = Ixy and Izz = Ixx + Iyy. Define

A = 1
2

(
Ixx + Iyy

)
(13.39)

B =

√
1
4

(
Ixx − Iyy

)2
+ I2

xy (13.40)

ϑ = tan−1

(
2Ixy

Ixx − Iyy

)
, (13.41)
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so that

I =



A+B cos ϑ B sinϑ 0
B sinϑ A−B cos ϑ 0

0 0 2A


 , (13.42)

The characteristic polynomial is found to be

P (λ) = (λ− 2A)
[
(λ−A)2 −B2

]
, (13.43)

which gives λ1 = A, λ2,3 = A±B. The corresponding normalized eigenvectors are

ψ1 =




0
0
1


 , ψ2 =




cos 1
2ϑ

sin 1
2ϑ

0


 , ψ3 =



− sin 1

2ϑ
cos 1

2ϑ
0


 (13.44)

and therefore

R =




0 0 1
cos 1

2ϑ sin 1
2ϑ 0

− sin 1
2ϑ cos 1

2ϑ 0


 . (13.45)

13.5 Euler’s Equations

Let us now choose our coordinate axes to be the principal axes of inertia, with the CM at
the origin. We may then write

ω =



ω1

ω2

ω3


 , I =



I1 0 0
0 I2 0
0 0 I3


 =⇒ L =



I1 ω1

I2 ω2

I3 ω3


 . (13.46)

The equations of motion are

N ext =

(
dL

dt

)

inertial

=

(
dL

dt

)

body

+ ω ×L

= I ω̇ +ω × (I ω) .

Thus, we arrive at Euler’s equations:

I1 ω̇1 = (I2 − I3)ω2 ω3 +N ext
1 (13.47)

I2 ω̇2 = (I3 − I1)ω3 ω1 +N ext
2 (13.48)

I3 ω̇3 = (I1 − I2)ω1 ω2 +N ext
3 . (13.49)

These are coupled and nonlinear. Also note the fact that the external torque must be
evaluated along body-fixed principal axes. We can however make progress in the case



232 CHAPTER 13. RIGID BODY MOTION AND ROTATIONAL DYNAMICS

Figure 13.5: Wobbling of a torque-free symmetric top.

where N ext = 0, i.e. when there are no external torques. This is true for a body in free
space, or in a uniform gravitational field. In the latter case,

N ext =
∑

i

ri × (mi g) =
(∑

i

miri

)
× g , (13.50)

where g is the uniform gravitational acceleration. In a body-fixed frame whose origin is the
CM, we have

∑
imiri = 0, and the external torque vanishes!

Precession of torque-free symmetric tops: Consider a body which has a symme-
try axis ê3. This guarantees I1 = I2, but in general we still have I1 6= I3. In the absence
of external torques, the last of Euler’s equations says ω̇3 = 0, so ω3 is a constant. The
remaining two equations are then

ω̇1 =

(
I1 − I3
I1

)
ω3 ω2 , ω̇2 =

(
I3 − I1
I1

)
ω3 ω1 . (13.51)

I.e.ω̇1 = −Ωω2 and ω̇2 = +Ωω1, with

Ω =

(
I3 − I1
I1

)
ω3 , (13.52)

which are the equations of a harmonic oscillator. The solution is easily obtained:

ω1(t) = ω⊥ cos
(
Ωt+ δ

)
, ω2(t) = ω⊥ sin

(
Ωt+ δ

)
, ω3(t) = ω3 , (13.53)

where ω⊥ and δ are constants of integration, and where |ω| = (ω2
⊥ +ω2

3)
1/2. This motion is

sketched in Fig. 13.5. Note that the perpendicular components of ω oscillate harmonically,
and that the angle ω makes with respect to ê3 is λ = tan−1(ω⊥/ω3).

For the earth, (I3 − I1)/I1 ≈ 1
305 , so ω3 ≈ ω, and Ω ≈ ω/305, yielding a precession period

of 305 days, or roughly 10 months. Astronomical observations reveal such a precession,
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known as the Chandler wobble. For the earth, the precession angle is λChandler ≃ 6 × 10−7

rad, which means that the North Pole moves by about 4 meters during the wobble. The
Chandler wobble has a period of about 14 months, so the näıve prediction of 305 days is
off by a substantial amount. This discrepancy is attributed to the mechanical properties of
the earth: elasticity and fluidity. The earth is not solid!1

Asymmetric tops: Next, consider the torque-free motion of an asymmetric top, where
I1 6= I2 6= I3 6= I1. Unlike the symmetric case, there is no conserved component of ω. True,
we can invoke conservation of energy and angular momentum,

E = 1
2I1 ω

2
1 + 1

2I2 ω
2
2 + 1

2I3 ω
2
3 (13.54)

L2 = I2
1 ω

2
1 + I2

2 ω
2
2 + I2

3 ω
2
3 , (13.55)

and, in principle, solve for ω1 and ω2 in terms of ω3, and then invoke Euler’s equations
(which must honor these conservation laws). However, the nonlinearity greatly complicates
matters and in general this approach is a dead end.

We can, however, find a particular solution quite easily – one in which the rotation is about
a single axis. Thus, ω1 = ω2 = 0 and ω3 = ω0 is indeed a solution for all time, according to
Euler’s equations. Let us now perturb about this solution, to explore its stability. We write

ω = ω0 ê3 + δω , (13.56)

and we invoke Euler’s equations, linearizing by dropping terms quadratic in δω. This yield

I1 δω̇1 = (I2 − I3)ω0 δω2 +O(δω2 δω3) (13.57)

I2 δω̇2 = (I3 − I1)ω0 δω1 +O(δω3 δω1) (13.58)

I3 δω̇3 = 0 +O(δω1 δω2) . (13.59)

Taking the time derivative of the first equation and invoking the second, and vice versa,

yields

δω̈1 = −Ω2 δω1 , δω̈2 = −Ω2 δω2 , (13.60)

with

Ω2 =
(I3 − I2)(I3 − I1)

I1 I2
· ω2

0 . (13.61)

The solution is then δω1(t) = C cos(Ωt + δ).

If Ω2 > 0, then Ω is real, and the deviation results in a harmonic precession. This occurs
if I3 is either the largest or the smallest of the moments of inertia. If, however, I3 is the
middle moment, then Ω2 < 0, and Ω is purely imaginary. The perturbation will in general
increase exponentially with time, which means that the initial solution to Euler’s equations
is unstable with respect to small perturbations. This result can be vividly realized using a
tennis racket, and sometimes goes by the name of the “tennis racket theorem.”

1The earth is a layered like a Mozartkugel, with a solid outer shell, an inner fluid shell, and a solid (iron)
core.
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13.5.1 Example

PROBLEM: A unsuspecting solid spherical planet of mass M0 rotates with angular velocity
ω0. Suddenly, a giant asteroid of mass αM0 smashes into and sticks to the planet at a
location which is at polar angle θ relative to the initial rotational axis. The new mass
distribution is no longer spherically symmetric, and the rotational axis will precess. Recall
Euler’s equation

dL

dt
+ ω ×L = N ext (13.62)

for rotations in a body-fixed frame.

(a) What is the new inertia tensor Iαβ along principle center-of-mass frame axes? Don’t

forget that the CM is no longer at the center of the sphere! Recall I = 2
5MR2 for a solid

sphere.

(b) What is the period of precession of the rotational axis in terms of the original length
of the day 2π/ω0?

SOLUTION: Let’s choose body-fixed axes with ẑ pointing from the center of the planet to
the smoldering asteroid. The CM lies a distance

d =
αM0 · R+M0 · 0

(1 + α)M0
=

α

1 + α
R (13.63)

from the center of the sphere. Thus, relative to the center of the sphere, we have

I = 2
5M0R

2




1 0 0
0 1 0
0 0 1


+ αM0R

2




1 0 0
0 1 0
0 0 0


 . (13.64)

Now we shift to a frame with the CM at the origin, using the parallel axis theorem,

Iαβ(d) = ICM
αβ +M

(
d2 δαβ − dαdβ

)
. (13.65)

Thus, with d = dẑ,

ICM
αβ = 2

5M0R
2




1 0 0
0 1 0
0 0 1


+ αM0R

2




1 0 0
0 1 0
0 0 0


− (1 + α)M0d

2




1 0 0
0 1 0
0 0 0


 (13.66)

= M0R
2




2
5 + α

1+α 0 0

0 2
5 + α

1+α 0

0 0 2
5


 . (13.67)
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In the absence of external torques, Euler’s equations along principal axes read

I1
dω1

dt
= (I2 − I3)ω2 ω3

I2
dω2

dt
= (I3 − I1)ω3 ω1

I3
dω3

dt
= (I1 − I2)ω1 ω2

(13.68)

Since I1 = I2, ω3(t) = ω3(0) = ω0 cos θ is a constant. We then obtain ω̇1 = Ωω2, and

ω̇2 = −Ωω1, with

Ω =
I2 − I3
I1

ω3 =
5α

7α + 2
ω3 . (13.69)

The period of precession τ in units of the pre-cataclysmic day is

τ

T
=
ω

Ω
=

7α + 2

5α cos θ
. (13.70)

13.6 Euler’s Angles

In d dimensions, an orthogonal matrix R ∈ O(d) has 1
2d(d − 1) independent parameters.

To see this, consider the constraint RtR = 1. The matrix RtR is manifestly symmetric,
so it has 1

2d(d + 1) independent entries (e.g. on the diagonal and above the diagonal).
This amounts to 1

2d(d + 1) constraints on the d2 components of R, resulting in 1
2d(d − 1)

freedoms. Thus, in d = 3 rotations are specified by three parameters. The Euler angles

{φ, θ, ψ} provide one such convenient parameterization.

A general rotation R(φ, θ, ψ) is built up in three steps. We start with an orthonormal triad
ê0
µ of body-fixed axes. The first step is a rotation by an angle φ about ê0

3:

ê′µ = Rµν
(
ê0

3, φ
)
ê0
ν , R

(
ê0

3, φ
)

=




cosφ sinφ 0
− sinφ cosφ 0

0 0 1


 (13.71)

This step is shown in panel (a) of Fig. 13.6. The second step is a rotation by θ about the
new axis ê′1:

ê′′µ = Rµν
(
ê′1, θ

)
ê′ν , R

(
ê′1, θ

)
=




1 0 0
0 cos θ sin θ
0 − sin θ cos θ


 (13.72)

This step is shown in panel (b) of Fig. 13.6. The third and final step is a rotation by ψ
about the new axis ê′′3 :

ê′′′µ = Rµν
(
ê′′3 , ψ

)
ê′′ν , R

(
ê′′3 , ψ

)
=




cosψ sinψ 0
− sinψ cosψ 0

0 0 1


 (13.73)
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Figure 13.6: A general rotation, defined in terms of the Euler angles {φ, θ, ψ}. Three
successive steps of the transformation are shown.

This step is shown in panel (c) of Fig. 13.6. Putting this all together,

R(φ, θ, ψ) = R
(
ê′′3 , φ

)
R
(
ê′1, θ

)
R
(
ê0

3, ψ
)

(13.74)

=




cosψ sinψ 0
− sinψ cosψ 0

0 0 1






1 0 0
0 cos θ sin θ
0 − sin θ cos θ






cosφ sinφ 0
− sinφ cosφ 0

0 0 1




=




cosψ cosφ− sinψ cos θ sinφ cosψ sinφ+ sinψ cos θ cosφ sinψ sin θ
− sinψ cosφ− cosψ cos θ sinφ − sinψ sinφ+ cosψ cos θ cosφ cosψ sin θ

sin θ sinφ − sin θ cosφ cos θ


 .

Next, we’d like to relate the components ωµ = ω · êµ (with êµ ≡ ê′′′µ ) of the rotation in the

body-fixed frame to the derivatives φ̇, θ̇, and ψ̇. To do this, we write

ω = φ̇ êφ + θ̇ êθ + ψ̇ êψ , (13.75)

where

ê0
3 = êφ = sin θ sinψ ê1 + sin θ cosψ ê2 + cos θ ê3 (13.76)

êθ = cosψ ê1 − sinψ ê2 (“line of nodes”) (13.77)

êψ = ê3 . (13.78)
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This gives

ω1 = ω · ê1 = φ̇ sin θ sinψ + θ̇ cosψ (13.79)

ω2 = ω · ê2 = φ̇ sin θ cosψ − θ̇ sinψ (13.80)

ω3 = ω · ê3 = φ̇ cos θ + ψ̇ . (13.81)

Note that

φ̇↔ precession , θ̇ ↔ nutation , ψ̇ ↔ axial rotation . (13.82)

The general form of the kinetic energy is then

T = 1
2I1
(
φ̇ sin θ sinψ + θ̇ cosψ

)2

+ 1
2I2
(
φ̇ sin θ cosψ − θ̇ sinψ

)2
+ 1

2I3
(
φ̇ cos θ + ψ̇

)2
. (13.83)

Note that

L = pφ êφ + pθ êθ + pψ êψ , (13.84)

which may be verified by explicit computation.

13.6.1 Torque-free symmetric top

A body falling in a gravitational field experiences no net torque about its CM:

N ext =
∑

i

ri × (−mi g) = g ×
∑

i

mi ri = 0 . (13.85)

For a symmetric top with I1 = I2, we have

T = 1
2I1
(
θ̇2 + φ̇2 sin2θ

)
+ 1

2I3
(
φ̇ cos θ + ψ̇

)2
. (13.86)

The potential is cyclic in the Euler angles, hence the equations of motion are

d

dt

∂T

∂(φ̇, θ̇, ψ̇)
=

∂T

∂(φ, θ, ψ)
. (13.87)

Since φ and ψ are cyclic in T , their conjugate momenta are conserved:

pφ =
∂L

∂φ̇
= I1 φ̇ sin2θ + I3 (φ̇ cos θ + ψ̇) cos θ (13.88)

pψ =
∂L

∂ψ̇
= I3 (φ̇ cos θ + ψ̇) . (13.89)

Note that pψ = I3 ω3, hence ω3 is constant, as we have already seen.

To solve for the motion, we first note that L is conserved in the inertial frame. We are
therefore permitted to define L̂ = ê0

3 = êφ. Thus, pφ = L. Since êφ · êψ = cos θ, we have
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Figure 13.7: A dreidl is a symmetric top. The four-fold symmetry axis guarantees I1 = I2.
The blue diamond represents the center-of-mass.

that pψ = L · êψ = L cos θ. Finally, êφ · êθ = 0, which means pθ = L · êθ = 0. From the
equations of motion,

ṗθ = I1 θ̈ =
(
I1 φ̇ cos θ − pψ

)
φ̇ sin θ , (13.90)

hence we must have

θ̇ = 0 , φ̇ =
pψ

I1 cos θ
. (13.91)

Note that θ̇ = 0 follows from conservation of pψ = L cos θ. From the equation for pψ, we
may now conclude

ψ̇ =
pψ
I3
−
pψ
I1

=

(
I3 − I1
I3

)
ω3 , (13.92)

which recapitulates (13.52), with ψ̇ = Ω.

13.6.2 Symmetric top with one point fixed

Consider the case of a symmetric top with one point fixed, as depicted in Fig. 13.7. The
Lagrangian is

L = 1
2I1
(
θ̇2 + φ̇2 sin2θ

)
+ 1

2I3
(
φ̇ cos θ + ψ̇

)2 −Mgℓ cos θ . (13.93)

Here, ℓ is the distance from the fixed point to the CM, and the inertia tensor is defined along
principal axes whose origin lies at the fixed point (not the CM!). Gravity now supplies a
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Figure 13.8: The effective potential of eq. 13.102.

torque, but as in the torque-free case, the Lagrangian is still cyclic in φ and ψ, so

pφ = (I1 sin2θ + I3 cos2θ) φ̇+ I3 cos θ ψ̇ (13.94)

pψ = I3 cos θ φ̇+ I3 ψ̇ (13.95)

are each conserved. We can invert these relations to obtain φ̇ and ψ̇ in terms of {pφ, pψ, θ}:

φ̇ =
pφ − pψ cos θ

I1 sin2θ
, ψ̇ =

pψ
I3
− (pφ − pψ cos θ) cos θ

I1 sin2θ
. (13.96)

In addition, since ∂L/∂t = 0, the total energy is conserved:

E = T + U = 1
2I1 θ̇

2+

Ueff (θ)︷ ︸︸ ︷
(pφ − pψ cos θ)2

2I1 sin2θ
+
p2
ψ

2I3
+Mgℓ cos θ , (13.97)

where the term under the brace is the effective potential Ueff(θ).

The problem thus reduces to the one-dimensional dynamics of θ(t), i.e.

I1 θ̈ = −∂Ueff

∂θ
, (13.98)

with

Ueff(θ) =
(pφ − pψ cos θ)2

2I1 sin2θ
+
p2
ψ

2I3
+Mgℓ cos θ . (13.99)

Using energy conservation, we may write

dt = ±
√
I1
2

dθ√
E − Ueff(θ)

. (13.100)
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and thus the problem is reduced to quadratures:

t(θ) = t(θ0)±
√
I1
2

θ∫

θ0

dϑ
1√

E − Ueff(ϑ)
. (13.101)

We can gain physical insight into the motion by examining the shape of the effective po-
tential,

Ueff(θ) =
(pφ − pψ cos θ)2

2I1 sin2θ
+Mgℓ cos θ +

p2
ψ

2I3
, (13.102)

over the interval θ ∈ [0, π]. Clearly Ueff(0) = Ueff(π) =∞, so the motion must be bounded.
What is not yet clear, but what is nonetheless revealed by some additional analysis, is that
Ueff(θ) has a single minimum on this interval, at θ = θ0. The turning points for the θ motion
are at θ = θa and θ = θb, where Ueff(θa) = Ueff(θb) = E. Clearly if we expand about θ0 and
write θ = θ0 + η, the η motion will be harmonic, with

η(t) = η0 cos(Ωt+ δ) , Ω =

√
U ′′

eff(θ0)

I1
. (13.103)

To prove that Ueff(θ) has these features, let us define u ≡ cos θ. Then u̇ = − θ̇ sin θ, and

from E = 1
2I1 θ̇

2 + Ueff(θ) we derive

u̇2 =

(
2E

I1
−

p2
ψ

I1I3

)
(1− u2)− 2Mgℓ

I1
(1− u2)u−

(
pφ − pψ u

I1

)2

≡ f(u) . (13.104)

The turning points occur at f(u) = 0. The function f(u) is cubic, and the coefficient of the

cubic term is 2Mgℓ/I1, which is positive. Clearly f(u = ±1) = −(pφ∓ pψ)2/I2
1 is negative,

so there must be at least one solution to f(u) = 0 on the interval u ∈ (1,∞). Clearly there
can be at most three real roots for f(u), since the function is cubic in u, hence there are at

most two turning points on the interval u ∈ [−1, 1]. Thus, Ueff(θ) has the form depicted in
fig. 13.8.

To apprehend the full motion of the top in an inertial frame, let us follow the symmetry
axis ê3:

ê3 = sin θ sinφ ê0
1 − sin θ cosφ ê0

2 + cos θ ê0
3 . (13.105)

Once we know θ(t) and φ(t) we’re done. The motion θ(t) is described above: θ oscillates
between turning points at θa and θb. As for φ(t), we have already derived the result

φ̇ =
pφ − pψ cos θ

I1 sin2θ
. (13.106)

Thus, if pφ > pψ cos θa, then φ̇ will remain positive throughout the motion. If, on the other
hand, we have

pψ cos θb < pφ < pψ cos θa , (13.107)

then φ̇ changes sign at an angle θ∗ = cos−1
(
pφ/pψ

)
. The motion is depicted in Fig. 13.9.

An extensive discussion of this problem is given in H. Goldstein, Classical Mechanics.
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Figure 13.9: Precession and nutation of the symmetry axis of a symmetric top.

13.7 Rolling and Skidding Motion of Real Tops

The material in this section is based on the corresponding sections from V. Barger and
M. Olsson, Classical Mechanics: A Modern Perspective. This is an excellent book which
contains many interesting applications and examples.

13.7.1 Rolling tops

In most tops, the point of contact rolls or skids along the surface. Consider the peg end top
of Fig. 13.10, executing a circular rolling motion, as sketched in Fig. 13.11. There are three
components to the force acting on the top: gravity, the normal force from the surface, and
friction. The frictional force is perpendicular to the CM velocity, and results in centripetal
acceleration of the top:

f = MΩ2ρ ≤ µMg , (13.108)

where Ω is the frequency of the CM motion and µ is the coefficient of friction. If the above
inequality is violated, the top starts to slip.

The frictional and normal forces combine to produce a torque N = Mgℓ sin θ − fℓ cos θ
about the CM2. This torque is tangent to the circular path of the CM, and causes L to
precess. We assume that the top is spinning rapidly, so that L very nearly points along
the symmetry axis of the top itself. (As we’ll see, this is true for slow precession but not

for fast precession, where the precession frequency is proportional to ω3.) The precession is
then governed by the equation

N = Mgℓ sin θ − fℓ cos θ

=
∣∣L̇
∣∣ =

∣∣Ω ×L
∣∣ ≈ Ω I3 ω3 sin θ , (13.109)

2Gravity of course produces no net torque about the CM.
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Figure 13.10: A top with a peg end. The frictional forces f and fskid are shown. When the
top rolls without skidding, fskid = 0.

where ê3 is the instantaneous symmetry axis of the top. Substituting f = MΩ2ρ,

Mgℓ

I3 ω3

(
1− Ω2ρ

g
ctn θ

)
= Ω , (13.110)

which is a quadratic equation for Ω. We supplement this with the ‘no slip’ condition,

ω3 δ = Ω
(
ρ+ ℓ sin θ

)
, (13.111)

resulting in two equations for the two unknowns Ω and ρ.

Substituting for ρ(Ω) and solving for Ω, we obtain

Ω =
I3 ω3

2Mℓ2 cos θ

{
1 +

Mgℓδ

I3
ctn θ ±

√(
1 +

Mgℓδ

I3
ctn θ

)2
− 4Mℓ2

I3
· Mgℓ

I3 ω
2
3

}
. (13.112)

This in order to have a real solution we must have

ω3 ≥
2Mℓ2 sin θ

I3 sin θ +Mgℓδ cos θ

√
g

ℓ
. (13.113)

If the inequality is satisfied, there are two possible solutions for Ω, corresponding to fast
and slow precession. Usually one observes slow precession. Note that it is possible that
ρ < 0, in which case the CM and the peg end lie on opposite sides of a circle from each
other.

13.7.2 Skidding tops

A skidding top experiences a frictional force which opposes the skidding velocity, until
vskid = 0 and a pure rolling motion sets in. This force provides a torque which makes the
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Figure 13.11: Circular rolling motion of the peg top.

top rise:

θ̇ = −Nskid

L
= −µMgℓ

I3 ω3
. (13.114)

Suppose δ ≈ 0, in which case ρ + ℓ sin θ = 0, from eqn. 13.111, and the point of contact
remains fixed. Now recall the effective potential for a symmetric top with one point fixed:

Ueff(θ) =
(pφ − pψ cos θ)2

2I1 sin2θ
+
p2
ψ

2I3
+Mgℓ cos θ . (13.115)

We demand U ′
eff(θ0) = 0, which yields

cos θ0 · β2 − pψ sin2θ0 · β +MgℓI1 sin4θ0 = 0 , (13.116)

where
β ≡ pφ − pψ cos θ0 = I1 sin2θ0 φ̇ . (13.117)

Solving the quadratic equation for β, we find

φ̇ =
I3 ω3

2I1 cos θ0

(
1±

√

1− 4MgℓI1 cos θ0
I2
3 ω

2
3

)
. (13.118)

This is simply a recapitulation of eqn. 13.112, with δ = 0 and with Mℓ2 replaced by I1.

Note I1 = Mℓ2 by the parallel axis theorem if ICM
1 = 0. But to the extent that ICM

1 6= 0, our
treatment of the peg top was incorrect. It turns out to be OK, however, if the precession is
slow, i.e. if Ω/ω3 ≪ 1.

On a level surface, cos θ0 > 0, and therefore we must have

ω3 ≥
2

I3

√
MgℓI1 cos θ0 . (13.119)
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Figure 13.12: The tippie-top behaves in a counterintuitive way. Once started spinning with
the peg end up, the peg axis rotates downward. Eventually the peg scrapes the surface and
the top rises to the vertical in an inverted orientation.

Thus, if the top spins too slowly, it cannot maintain precession. Eqn. 13.118 says that there
are two possible precession frequencies. When ω3 is large, we have

φ̇slow =
Mgℓ

I3 ω3
+O(ω−1

3 ) , φ̇fast =
I3 ω3

I1 cos θ0
+O(ω−3

3 ) . (13.120)

Again, one usually observes slow precession.

A top with ω3 >
2
I3

√
MgℓI1 may ‘sleep’ in the vertical position with θ0 = 0. Due to the

constant action of frictional forces, ω3 will eventually drop below this value, at which time
the vertical position is no longer stable. The top continues to slow down and eventually
falls.

13.7.3 Tippie-top

A particularly nice example from the Barger and Olsson book is that of the tippie-top, a
truncated sphere with a peg end, sketched in Fig. 13.12 The CM is close to the center
of curvature, which means that there is almost no gravitational torque acting on the top.
The frictional force f opposes slipping, but as the top spins f rotates with it, and hence
the time-averaged frictional force 〈f〉 ≈ 0 has almost no effect on the motion of the CM.
A similar argument shows that the frictional torque, which is nearly horizontal, also time
averages to zero: 〈

dL

dt

〉

inertial

≈ 0 . (13.121)

In the body-fixed frame, however, N is roughly constant, with magnitude N ≈ µMgR,
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where R is the radius of curvature and µ the coefficient of sliding friction. Now we invoke

N =
dL

dt

∣∣∣∣
body

+ ω ×L . (13.122)

The second term on the RHS is very small, because the tippie-top is almost spherical, hence
inertia tensor is very nearly diagonal, and this means

ω ×L ≈ ω × Iω = 0 . (13.123)

Thus, L̇body ≈ N , and taking the dot product of this equation with the unit vector k̂, we
obtain

−N sin θ = k̂ ·N =
d

dt

(
k̂ · Lbody

)
= −L sin θ θ̇ . (13.124)

Thus,

θ̇ =
N

L
≈ µMgR

Iω
. (13.125)

Once the stem scrapes the table, the tippie-top rises to the vertical just like any other rising
top.
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Chapter 14

Continuum Mechanics

14.1 Strings

Consider a string of linear mass density µ(x) under tension τ(x).1 Let the string move in a
plane, such that its shape is described by a smooth function y(x), the vertical displacement
of the string at horizontal position x, as depicted in fig. 14.1. The action is a functional
of the height y(x, t), where the coordinate along the string, x, and time, t, are the two
independent variables. Consider a differential element of the string extending from x to
x+ dx. The change in length relative to the unstretched (y = 0) configuration is

dℓ =
√
dx2 + dy2 − dx =

1

2

(
∂y

∂x

)2

dx+O
(
dx2
)
. (14.1)

The differential potential energy is then

dU = τ(x) dℓ = 1
2 τ(x)

(
∂y

∂x

)2

dx . (14.2)

The differential kinetic energy is simply

dT = 1
2 µ(x)

(
∂y

∂t

)2

dx . (14.3)

We can then write

L =

∫
dxL , (14.4)

where the Lagrangian density L is

L(y, ẏ, y′;x, t) = 1
2 µ(x)

(
∂y

∂t

)2

− 1
2 τ(x)

(
∂y

∂x

)2

. (14.5)

1As an example of a string with a position-dependent tension, consider a string of length ℓ freely suspended
from one end at z = 0 in a gravitational field. The tension is then τ (z) = µg (ℓ− z).

247
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Figure 14.1: A string is described by the vertical displacement field y(x, t).

The action for the string is now a double integral,

S =

tb∫

ta

dt

xb∫

xa

dx L(y, ẏ, y′;x, t) , (14.6)

where y(x, t) is the vertical displacement field. Typically, we have L = 1
2µẏ

2 − 1
2τy

′2. The
first variation of S is

δS =

xb∫

xa

dx

tb∫

ta

dt

[
∂L
∂y
− ∂

∂x

(
∂L
∂y′

)
− ∂

∂t

(
∂L
∂ẏ

)]
δy (14.7)

+

xb∫

xa

dx

[
∂L
∂ẏ

δy

]t=tb

t=ta

+

tb∫

ta

dt

[
∂L
∂y′

δy

]x=xa

x=xb

, (14.8)

which simply recapitulates the general result from eqn. 14.203. There are two boundary
terms, one of which is an integral over time and the other an integral over space. The first
boundary term vanishes provided δy(x, ta) = δy(x, tb) = 0. The second boundary term
vanishes provided τ(x) y′(x) δy(x) = 0 at x = xa and x = xb, for all t. Assuming τ(x) does
not vanish, this can happen in one of two ways: at each endpoint either y(x) is fixed or
y′(x) vanishes.

Assuming that either y(x) is fixed or y′(x) = 0 at the endpoints x = xa and x = xb, the
Euler-Lagrange equations for the string are obtained by setting δS = 0:

0 =
δS

δy(x, t)
=
∂L
∂y
− ∂

∂t

(
∂L
∂ẏ

)
− ∂

∂x

(
∂L
∂y′

)

=
∂

∂x

[
τ(x)

∂y

∂x

]
− µ(x)

∂2y

∂t2
, (14.9)

where y′ = ∂y
∂x and ẏ = ∂y

∂t . When τ(x) = τ and µ(x) = µ are both constants, we obtain the
Helmholtz equation,

1

c2
∂2y

∂t2
− ∂2y

∂x2
= 0 , (14.10)
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which is the wave equation for the string, where c =
√
τ/µ has dimensions of velocity. We

will now see that c is the speed of wave propagation on the string.

14.2 d’Alembert’s Solution to the Wave Equation

Let us define two new variables,

u ≡ x− ct , v ≡ x+ ct . (14.11)

We then have

∂

∂x
=
∂u

∂x

∂

∂u
+
∂v

∂x

∂

∂v
=

∂

∂u
+

∂

∂v
(14.12)

1

c

∂

∂t
=

1

c

∂u

∂t

∂

∂u
+

1

c

∂v

∂t

∂

∂v
= − ∂

∂u
+

∂

∂v
. (14.13)

Thus,

1

c2
∂2

∂t2
− ∂2

∂x2
= −4

∂2

∂u ∂v
. (14.14)

Thus, the wave equation may be solved:

∂2y

∂u ∂v
= 0 =⇒ y(u, v) = f(u) + g(v) , (14.15)

where f(u) and g(v) are arbitrary functions. For the moment, we work with an infinite
string, so we have no spatial boundary conditions to satisfy. Note that f(u) describes a
right-moving disturbance, and g(v) describes a left-moving disturbance:

y(x, t) = f(x− ct) + g(x+ ct) . (14.16)

We do, however, have boundary conditions in time. At t = 0, the configuration of the string
is given by y(x, 0), and its instantaneous vertical velocity is ẏ(x, 0). We then have

y(x, 0) = f(x) + g(x) (14.17)

ẏ(x, 0) = −c f ′(x) + c g′(x) , (14.18)

hence

f ′(x) = 1
2 y

′(x, 0) − 1
2c ẏ(x, 0) (14.19)

g′(x) = 1
2 y

′(x, 0) + 1
2c ẏ(x, 0) , (14.20)
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and integrating we obtain the right and left moving components

f(ξ) = 1
2 y(ξ, 0) − 1

2c

ξ∫

0

dξ′ ẏ(ξ′, 0) − C (14.21)

g(ξ) = 1
2 y(ξ, 0) + 1

2c

ξ∫

0

dξ′ ẏ(ξ′, 0) + C , (14.22)

where C is an arbitrary constant. Adding these together, we obtain the full solution

y(x, t) = 1
2

[
y(x− ct, 0) + y(x+ ct, 0)

]
+ 1

2c

x+ct∫

x−ct

dξ ẏ(ξ, 0) , (14.23)

valid for all times.

14.2.1 Energy density and energy current

The Hamiltonian density for a string is

H = Π ẏ − L , (14.24)

where

Π =
∂L
∂ẏ

= µ ẏ (14.25)

is the momentum density. Thus,

H =
Π2

2µ
+ 1

2τ y
′2 . (14.26)

Expressed in terms of ẏ rather than Π, this is the energy density E ,

E = 1
2µ ẏ

2 + 1
2τ y

′2 . (14.27)

We now evaluate Ė for a solution to the equations of motion:

∂E
∂t

= µ
∂y

∂t

∂2y

∂t2
+ τ

∂y

∂x

∂2y

∂t ∂x

= τ
∂y

∂t

∂

∂x

(
τ
∂y

∂x

)
+ τ

∂y

∂x

∂2y

∂t ∂x

=
∂

∂x

[
τ
∂y

∂x

∂y

∂t

]
≡ −∂jE

∂x
, (14.28)

where the energy current density (or energy flux) is

jE = −τ ∂y
∂x

∂y

∂t
. (14.29)
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Figure 14.2: Reflection of a pulse at an interface at x = 0, with y(0, t) = 0.

We therefore have that solutions of the equation of motion also obey the energy continuity

equation
∂E
∂t

+
∂jE
∂x

= 0 . (14.30)

Let us integrate the above equation between points x1 and x2. We obtain

∂

∂t

x2∫

x1

dx E(x, t) = −
x2∫

x1

dx
∂jE (x, t)

∂x
= jE(x1, t)− jE(x2, t) , (14.31)

which says that the time rate of change of the energy contained in the interval
[
x1, x2

]
is

equal to the difference between the entering and exiting energy flux.

When τ(x) = τ and µ(x) = µ, we have

y(x, t) = f(x− ct) + g(x+ ct) (14.32)

and we find

E(x, t) = τ [f ′(x− ct)
]2

+ τ
[
g′(x+ ct)

]2
(14.33)

jE(x, t) = cτ
[
f ′(x− ct)

]2 − cτ
[
g′(x+ ct)

]2
, (14.34)

which are each sums over right-moving and left-moving contributions.

14.2.2 Reflection at an interface

Consider a semi-infinite string on the interval
[
0,∞

]
, with y(0, t) = 0. We can still invoke

d’Alembert’s solution, y(x, t) = f(x− ct) + g(x+ ct), but we must demand

y(0, t) = f(−ct) + g(ct) = 0 ⇒ f(ξ) = −g(−ξ) . (14.35)

Thus,
y(x, t) = g(ct+ x)− g(ct − x) . (14.36)

Now suppose g(ξ) describes a pulse, and is nonzero only within a neighborhood of ξ = 0.
For large negative values of t, the right-moving part, −g(ct − x), is negligible everywhere,
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Figure 14.3: Reflection of a pulse at an interface at x = 0, with y′(0, t) = 0.

since x > 0 means that the argument ct − x is always large and negative. On the other
hand, the left moving part g(ct + x) is nonzero for x ≈ −ct > 0. Thus, for t < 0 we have
a left-moving pulse incident from the right. For t > 0, the situation is reversed, and the
left-moving component is negligible, and we have a right moving reflected wave. However,
the minus sign in eqn. 14.35 means that the reflected wave is inverted.

If instead of fixing the endpoint at x = 0 we attach this end of the string to a massless ring
which frictionlessly slides up and down a vertical post, then we must have y′(0, t) = 0, else
there is a finite vertical force on the massless ring, resulting in infinite acceleration. We
again write y(x, t) = f(x− ct) + g(x+ ct), and we invoke

y′(0, t) = f ′(−ct) + g′(ct) ⇒ f ′(ξ) = −g′(−ξ) , (14.37)

which, upon integration, yields f(ξ) = g(−ξ), and therefore

y(x, t) = g(ct+ x) + g(ct − x) . (14.38)

The reflected pulse is now ‘right-side up’, in contrast to the situation with a fixed endpoint.

14.2.3 Mass point on a string

Next, consider the case depicted in Fig. 14.4, where a point mass m is affixed to an infinite
string at x = 0. Let us suppose that at large negative values of t, a right moving wave
f(ct − x) is incident from the left. The full solution may then be written as a sum of
incident, reflected, and transmitted waves:

x < 0 : y(x, t) = f(ct− x) + g(ct+ x) (14.39)

x > 0 : y(x, t) = h(ct− x) . (14.40)

At x = 0, we invoke Newton’s second Law, F = ma:

mÿ(0, t) = τ y′(0+, t)− τ y′(0−, t) . (14.41)

Any discontinuity in the derivative y′(x, t) at x = 0 results in an acceleration of the point
mass. Note that

y′(0−, t) = −f ′(ct) + g′(ct) , y′(0+, t) = −h′(ct) . (14.42)
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Figure 14.4: Reflection and transmission at an impurity. A point mass m is affixed to an
infinite string at x = 0.

Further invoking continuity at x = 0, i.e. y(0−, t) = y(0+, t), we have

h(ξ) = f(ξ) + g(ξ) , (14.43)

and eqn. 14.41 becomes

g′′(ξ) +
2τ

mc2
g′(ξ) = −f ′′(ξ) . (14.44)

We solve this equation by Fourier analysis:

f(ξ) =

∞∫

−∞

dk

2π
f̂(k) eikξ , f̂(k) =

∞∫

−∞

dξ f(ξ) e−ikξ . (14.45)

Defining κ ≡ 2τ/mc2 = 2µ/m, we have

[
− k2 + iκk

]
ĝ(k) = k2 f̂(k) . (14.46)

We then have

ĝ(k) = − k

k − iκ f̂(k) ≡ r(k) f̂(k) (14.47)

ĥ(k) =
−iκ
k − iκ f̂(k) ≡ t(k) f̂(k) , (14.48)

where r(k) and t(k) are the reflection and transmission amplitudes, respectively. Note that

t(k) = 1 + r(k) . (14.49)
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In real space, we have

h(ξ) =

∞∫

−∞

dk

2π
t(k) f̂(k) eikξ (14.50)

=

∞∫

−∞

dξ′
[ ∞∫

−∞

dk

2π
t(k) eik(ξ−ξ

′)

]
f(ξ′) (14.51)

≡
∞∫

−∞

dξ′ T (ξ − ξ′) f(ξ′) , (14.52)

where

T (ξ − ξ′) =

∞∫

−∞

dk

2π
t(k) eik(ξ−ξ

′) , (14.53)

is the transmission kernel in real space. For our example with r(k) = −iκ/(k − iκ), the
integral is done easily using the method of contour integration:

T (ξ − ξ′) =

∞∫

−∞

dk

2π

−iκ
k − iκ e

ik(ξ−ξ′) = κ e−κ(ξ−ξ′) Θ(ξ − ξ′) . (14.54)

Therefore,

h(ξ) = κ

ξ∫

−∞

dξ′ e−κ(ξ−ξ′) f(ξ′) , (14.55)

and of course g(ξ) = h(ξ)− f(ξ). Note that m =∞ means κ = 0, in which case r(k) = −1
and t(k) = 0. Thus we recover the inversion of the pulse shape under reflection found
earlier.

For example, let the incident pulse shape be f(ξ) = bΘ
(
a− |ξ|

)
. Then

h(ξ) = κ

ξ∫

−∞

dξ′ e−κ(ξ−ξ′) bΘ(a− ξ′)Θ(a+ ξ′)

= b e−κξ
[
eκmin(a,ξ) − e−κa

]
Θ(ξ + a) . (14.56)

Taking cases,

h(ξ) =





0 if ξ < −a
b
(
1− e−κ(a+ξ)

)
if − a < ξ < a

2b e−κξ sinh(κa) if ξ > a .

(14.57)

In Fig. 14.5 we show the reflection and transmission of this square pulse for two different
values of κa.
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Figure 14.5: Reflection and transmission of a square wave pulse by a point mass at x = 0
The configuration of the string is shown for six different times, for κa = 0.5 (left panel)
and κa = 5.0 (right panel). Note that the κa = 0.5 case, which corresponds to a large mass
m = 2µ/κ, results in strong reflection with inversion, and weak transmission. For large κ,
corresponding to small mass m, the reflection is weak and the transmission is strong.

14.2.4 Interface between strings of different mass density

Consider the situation in fig. 14.6, where the string for x < 0 is of density µL and for x > 0
is of density µR. The d’Alembert solution in the two regions, with an incoming wave from
the left, is

x < 0: y(x, t) = f(cLt− x) + g(cLt+ x) (14.58)

x > 0: y(x, t) = h(cRt− x) . (14.59)

At x = 0 we have

f(cLt) + g(cLt) = h(cRt) (14.60)

−f ′(cLt) + g′(cLt) = −h′(cRt) , (14.61)

where the second equation follows from τ y′(0+, t) = τ y′(0−, t), so there is no finite verti-
cal force on the infinitesimal interval bounding x = 0, which contains infinitesimal mass.
Defining α ≡ cR/cL, we integrate the second of these equations and have

f(ξ) + g(ξ) = h(α ξ) (14.62)

f(ξ)− g(ξ) = α−1 h(α ξ) . (14.63)
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Figure 14.6: String formed from two semi-infinite regions of different densities..

Note that y(±∞, 0) = 0 fixes the constant of integration. The solution is then

g(ξ) =
α− 1

α+ 1
f(ξ) (14.64)

h(ξ) =
2α

α+ 1
f(ξ/α) . (14.65)

Thus,

x < 0: y(x, t) = f
(
cLt− x

)
+

(
α− 1

α+ 1

)
f
(
cLt+ x

)
(14.66)

x > 0: y(x, t) =
2α

α+ 1
f
(
(cRt− x)/α

)
. (14.67)

It is instructive to compute the total energy in the string. For large negative values of the
time t, the entire disturbance is confined to the region x < 0. The energy is

E(−∞) = τ

∞∫

−∞

dξ
[
f ′(ξ)

]2
. (14.68)

For large positive times, the wave consists of the left-moving reflected g(ξ) component in
the region x < 0 and the right-moving transmitted component h(ξ) in the region x > 0.
The energy in the reflected wave is

EL(+∞) = τ

(
α− 1

α+ 1

)2 ∞∫

−∞

dξ
[
f ′(ξ)

]2
. (14.69)

For the transmitted portion, we use

y′(x > 0, t) =
2

α+ 1
f ′
(
(cRt− x)/α

)
(14.70)
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to obtain

ER(∞) =
4τ

(α+ 1)2

∞∫

−∞

dξ
[
f ′(ξ/α)

]2

=
4ατ

(α+ 1)2

∞∫

−∞

dξ
[
f ′(ξ)

]2
. (14.71)

Thus, EL(∞) + ER(∞) = E(−∞), and energy is conserved.

14.3 Finite Strings : Bernoulli’s Solution

Suppose xa = 0 and xb = L are the boundaries of the string, where y(0, t) = y(L, t) = 0.
Again we write

y(x, t) = f(x− ct) + g(x+ ct) . (14.72)

Applying the boundary condition at xa = 0 gives, as earlier,

y(x, t) = g(ct+ x)− g(ct − x) . (14.73)

Next, we apply the boundary condition at xb = L, which results in

g(ct + L)− g(ct− L) = 0 =⇒ g(ξ) = g(ξ + 2L) . (14.74)

Thus, g(ξ) is periodic, with period 2L. Any such function may be written as a Fourier sum,

g(ξ) =

∞∑

n=1

{
An cos

(
nπξ

L

)
+ Bn sin

(
nπξ

L

)}
. (14.75)

The full solution for y(x, t) is then

y(x, t) = g(ct+ x)− g(ct − x)

=

(
2

µL

)1/2 ∞∑

n=1

sin

(
nπx

L

){
An cos

(
nπct

L

)
+Bn sin

(
nπct

L

)}
, (14.76)

where An =
√

2µLBn and Bn = −√2µLAn. This is known as Bernoulli’s solution.

We define the functions

ψn(x) ≡
(

2

µL

)1/2

sin

(
nπx

L

)
. (14.77)

We also write

kn ≡
nπx

L
, ωn ≡

nπc

L
, n = 1, 2, 3, . . . ,∞ . (14.78)
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Thus, ψn(x) =
√

2/µL sin(knx) has (n + 1) nodes at x = jL/n, for j ∈ {0, . . . , n}. Note
that

〈
ψm
∣∣ψn

〉
≡

L∫

0

dxµψm(x)ψn(x) = δmn . (14.79)

Furthermore, this basis is complete:

µ

∞∑

n=1

ψn(x)ψn(x
′) = δ(x− x′) . (14.80)

Our general solution is thus equivalent to

y(x, 0) =
∞∑

n=1

An ψn(x) (14.81)

ẏ(x, 0) =

∞∑

n=1

nπc

L
Bn ψn(x) . (14.82)

The Fourier coefficients {An, Bn} may be extracted from the initial data using the orthonor-
mality of the basis functions and their associated resolution of unity:

An =

L∫

0

dxµψn(x) y(x, 0) (14.83)

Bn =
L

nπc

L∫

0

dxµψn(x) ẏ(x, 0) . (14.84)

As an example, suppose our initial configuration is a triangle, with

y(x, 0) =





2b
L x if 0 ≤ x ≤ 1

2L

2b
L (L− x) if 1

2L ≤ x ≤ L ,

(14.85)

and ẏ(x, 0) = 0. Then Bn = 0 for all n, while

An =

(
2µ

L

)1/2

· 2b
L

{ L/2∫

0

dxx sin

(
nπx

L

)
+

L∫

L/2

dx (L− x) sin

(
nπx

L

)}

= (2µL)1/2 · 4b

n2π2
sin
(

1
2nπ

)
δn,odd , (14.86)

after changing variables to x = Lθ/nπ and using θ sin θ dθ = d
(
sin θ − θ cos θ

)
. Another

way to write this is to separately give the results for even and odd coefficients:

A2k = 0 , A2k+1 =
4b

π2
(2µL)1/2 · (−1)k

(2k + 1)2
. (14.87)
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Figure 14.7: Evolution of a string with fixed ends starting from an isosceles triangle shape.

Note that each ψ2k(x) = −ψ2k(L − x) is antisymmetric about the midpoint x = 1
2L, for

all k. Since our initial conditions are that y(x, 0) is symmetric about x = 1
2L, none of the

even order eigenfunctions can enter into the expansion, precisely as we have found. The
d’Alembert solution to this problem is particularly simple and is shown in Fig. 14.7. Note
that g(x) = 1

2y(x, 0) must be extended to the entire real line. We know that g(x) = g(x+2L)
is periodic with spatial period 2L, but how to we extend g(x) from the interval

[
0, L

]
to

the interval
[
−L, 0

]
? To do this, we use y(x, 0) = g(x)− g(−x), which says that g(x) must

be antisymmetric, i.e. g(x) = −g(−x). Equivalently, ẏ(x, 0) = cg′(x)− cg′(−x) = 0, which
integrates to g(x) = −g(−x).

14.4 Sturm-Liouville Theory

Consider the Lagrangian density

L = 1
2 µ(x) ẏ2 − 1

2 τ(x) y
′2 − 1

2 v(x) y
2 . (14.88)

The last term is new and has the physical interpretation of a harmonic potential which
attracts the string to the line y = 0. The Euler-Lagrange equations are then

− ∂

∂x

[
τ(x)

∂y

∂x

]
+ v(x) y = −µ(x)

∂2y

∂t2
. (14.89)

This equation is invariant under time translation. Thus, if y(x, t) is a solution, then so is

y(x, t + t0), for any t0. This means that the solutions can be chosen to be eigenstates of

the operator ∂t, which is to say y(x, t) = ψ(x) e−iωt. Because the coefficients are real, both
y and y∗ are solutions, and taking linear combinations we have

y(x, t) = ψ(x) cos(ωt+ φ) . (14.90)

Plugging this into eqn. 14.89, we obtain

− d

dx

[
τ(x)ψ′(x)

]
+ v(x)ψ(x) = ω2 µ(x)ψ(x) . (14.91)
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This is the Sturm-Liouville equation. There are four types of boundary conditions that we
shall consider:

1. Fixed endpoint: ψ(x) = 0, where x = xa,b.

2. Natural: τ(x)ψ′(x) = 0, where x = xa,b.

3. Periodic: ψ(x) = ψ(x+ L), where L = xb − xa.

4. Mixed homogeneous: αψ(x) + β ψ′(x) = 0, where x = xa,b.

The Sturm-Liouville equation is an eigenvalue equation. The eigenfunctions {ψn(x)} satisfy

− d

dx

[
τ(x)ψ′

n(x)
]

+ v(x)ψn(x) = ω2
n µ(x)ψn(x) . (14.92)

Now suppose we a second solution ψm(x), satisfying

− d

dx

[
τ(x)ψ′

m(x)
]

+ v(x)ψm(x) = ω2
m µ(x)ψm(x) . (14.93)

Now multiply (14.92)∗ by ψm(x) and (14.93) by ψ∗
n(x) and subtract, yielding

ψ∗
n
d

dx

[
τ ψ′

m

]
− ψm

d

dx

[
τ ψ′∗

n

]
=
(
ω∗
n
2 − ω2

m

)
µψm ψ

∗
n (14.94)

=
d

dx

[
τ ψ∗

n ψ
′
m − τ ψm ψ′∗

n

]
. (14.95)

We integrate this equation over the length of the string, to get

(
ω∗
n
2 − ω2

m

)
xb∫

xa

dxµ(x)ψ∗
n(x)ψm(x) =

[
τ(x)ψ∗

n(x)ψ
′
m(x)− τ(x)ψm(x)ψ′∗

n(x)
]x=xb

x=xa

= 0 . (14.96)

The RHS vanishes for any of the four types of boundary conditions articulated above.

Thus, we have (
ω∗
n
2 − ω2

m

) 〈
ψn
∣∣ψm

〉
= 0 , (14.97)

where the inner product is defined as

〈
ψ
∣∣φ
〉
≡

xb∫

xa

dxµ(x)ψ∗(x)φ(x) . (14.98)

Note that the distribution µ(x) is non-negative definite. Settingm = n, we have
〈
ψn
∣∣ψn

〉
≥

0, and hence ω∗
n
2 = ω2

n, which says that ω2
n ∈ R. When ω2

m 6= ω2
n, the eigenfunctions are

orthogonal with respect to the above inner product. In the case of degeneracies, we may
invoke the Gram-Schmidt procedure, which orthogonalizes the eigenfunctions within a given
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degenerate subspace. Since the Sturm-Liouville equation is linear, we may normalize the
eigenfunctions, taking 〈

ψm
∣∣ψn

〉
= δmn. (14.99)

Finally, since the coefficients in the Sturm-Liouville equation are all real, we can and hence-
forth do choose the eigenfunctions themselves to be real.

Another important result, which we will not prove here, is the completeness of the eigen-
function basis. Completeness means

µ(x)
∑

n

ψ∗
n(x)ψn(x

′) = δ(x− x′) . (14.100)

Thus, any function can be expanded in the eigenbasis, viz.

φ(x) =
∑

n

Cn ψn(x) , Cn =
〈
ψn
∣∣φ
〉
. (14.101)

14.4.1 Variational method

Consider the functional

ω2
[
ψ(x)

]
=

1
2

xb∫
xa

dx
{
τ(x)ψ′2(x) + v(x)ψ2(x)

}

1
2

xb∫
xa

dxµ(x)ψ2(x)

≡ ND . (14.102)

The variation is

δω2 =
δN
D −

N δD
D2

=
δN − ω2 δD

D . (14.103)

Thus,

δω2 = 0 =⇒ δN = ω2 δD , (14.104)

which says

− d

dx

[
τ(x)

dψ(x)

dx

]
+ v(x)ψ(x) = ω2 µ(x)ψ(x) , (14.105)

which is the Sturm-Lioiuville equation. In obtaining this equation, we have dropped a
boundary term, which is correct provided

[
τ(x)ψ′(x)ψ(x)

]x=xb

x=xa

= 0 . (14.106)

This condition is satisfied for any of the first three classes of boundary conditions: ψ = 0
(fixed endpoint), τ ψ′ = 0 (natural), or ψ(xa) = ψ(xb), ψ

′(xa) = ψ′(xb) (periodic). For
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the fourth class of boundary conditions, αψ + βψ′ = 0 (mixed homogeneous), the Sturm-
Liouville equation may still be derived, provided one uses a slightly different functional,

ω2
[
ψ(x)

]
=
Ñ
D with Ñ = N +

α

2β

[
τ
(
xb
)
ψ2
(
xb
)
− τ
(
xa
)
ψ2
(
xa
)]
, (14.107)

since then

δÑ − Ñ δD =

xb∫

xa

dx

{
− d

dx

[
τ(x)

dψ(x)

dx

]
+ v(x)ψ(x) − ω2µ(x)ψ(x)

}
δψ(x)

+

[
τ(x)

(
ψ′(x) +

α

β
ψ(x)

)
δψ(x)

]x=xb

x=xa

, (14.108)

and the last term vanishes as a result of the boundary conditions.

For all four classes of boundary conditions we may write

ω2
[
ψ(x)

]
=

xb∫
xa

dxψ(x)

K︷ ︸︸ ︷[
− d

dx
τ(x)

d

dx
+ v(x)

]
ψ(x)

xb∫
xa

dxµ(x)ψ2(x)

(14.109)

If we expand ψ(x) in the basis of eigenfunctions of the Sturm-Liouville operator K,

ψ(x) =

∞∑

n=1

Cn ψn(x) , (14.110)

we obtain

ω2
[
ψ(x)

]
= ω2(C1, . . . , C∞) =

∑∞
j=1 |Cj|2 ω2

j∑∞
k=1 |Ck|2

. (14.111)

If ω2
1 ≤ ω2

2 ≤ . . ., then we see that ω2 ≥ ω2
1, so an arbitrary function ψ(x) will always yield

an upper bound to the lowest eigenvalue.

As an example, consider a violin string (v = 0) with a mass m affixed in the center. We
write µ(x) = µ+mδ(x− 1

2L), hence

ω2
[
ψ(x)

]
=

τ
L∫
0

dxψ′2(x)

mψ2(1
2L) + µ

L∫
0

dxψ2(x)

(14.112)

Now consider a trial function

ψ(x) =





Axα if 0 ≤ x ≤ 1
2L

A (L− x)α if 1
2L ≤ x ≤ L .

(14.113)
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Figure 14.8: One-parameter variational solution for a string with a mass m affixed at
x = 1

2L.

The functional ω2
[
ψ(x)

]
now becomes an ordinary function of the trial parameter α, with

ω2(α) =
2τ
∫ L/2
0 dxα2 x2α−2

m
(

1
2L
)2α

+ 2µ
L/2∫
0

dxx2α

=

(
2c

L

)2
· α2(2α+ 1)

(2α− 1)
[
1 + (2α + 1)mM

] , (14.114)

where M = µL is the mass of the string alone. We minimize ω2(α) to obtain the optimal
solution of this form:

d

dα
ω2(α) = 0 =⇒ 4α2 − 2α− 1 + (2α + 1)2 (α− 1)

m

M
= 0 . (14.115)

For m/M → 0, we obtain α = 1
4

(
1 +
√

5
)
≈ 0.809. The variational estimate for the

eigenvalue is then 6.00% larger than the exact answer ω0
1 = πc/L. In the opposite limit,

m/M →∞, the inertia of the string may be neglected. The normal mode is then piecewise
linear, in the shape of an isosceles triangle with base L and height y. The equation of
motion is then mÿ = −2τ · (y/1

2L), assuming |y/L| ≪ 1. Thus, ω1 = (2c/L)
√
M/m. This

is reproduced exactly by the variational solution, for which α→ 1 as m/M →∞.
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14.5 Continua in Higher Dimensions

In higher dimensions, we generalize the operator K as follows:

K = − ∂

∂xα
ταβ(x)

∂

∂xβ
+ v(x) . (14.116)

The eigenvalue equation is again

Kψ(x) = ω2 µ(x)ψ(x) , (14.117)

and the Green’s function again satisfies
[
K − ω2 µ(x)

]
Gω(x,x′) = δ(x− x′) , (14.118)

and has the eigenfunction expansion,

Gω(x,x′) =

∞∑

n=1

ψn(x)ψn(x
′)

ω2
n − ω2

. (14.119)

The eigenfunctions form a complete and orthonormal basis:

µ(x)

∞∑

n=1

ψn(x)ψn(x
′) = δ(x− x′) (14.120)

∫

Ω

dxµ(x)ψm(x)ψn(x) = δmn , (14.121)

where Ω is the region of space in which the continuous medium exists. For purposes of
simplicity, we consider here fixed boundary conditions u(x, t)

∣∣
∂Ω

= 0, where ∂Ω is the
boundary of Ω. The general solution to the wave equation

[
µ(x)

∂2

∂t2
− ∂

∂xα
ταβ(x)

∂

∂xβ
+ v(x)

]
u(x, t) = 0 (14.122)

is

u(x, t) =

∞∑

n=1

Cn ψn(x) cos(ωn t+ δn) . (14.123)

The variational approach generalizes as well. We define

N
[
ψ(x)

]
=

∫

Ω

dx

[
ταβ

∂ψ

∂xα
∂ψ

∂xβ
+ v ψ2

]
(14.124)

D
[
ψ(x)

]
=

∫

Ω

dx µψ2 , (14.125)

and

ω2
[
ψ(x)

]
=
N
[
ψ(x)

]

D
[
ψ(x)

] . (14.126)

Setting the variation δω2 = 0 recovers the eigenvalue equation Kψ = ω2µψ.
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14.5.1 Membranes

Consider a surface where the height z is a function of the lateral coordinates x and y:

z = u(x, y) . (14.127)

The equation of the surface is then

F (x, y, z) = z − u(x, y) = 0 . (14.128)

Let the differential element of surface area be dS. The projection of this element onto the
(x, y) plane is

dA = dx dy

= n̂ · ẑ dS . (14.129)

The unit normal n̂ is given by

n̂ =
∇F∣∣∇F

∣∣ =
ẑ −∇u√
1 + (∇u)2

. (14.130)

Thus,

dS =
dx dy

n̂ · ẑ =
√

1 + (∇u)2 dx dy . (14.131)

The potential energy for a deformed surface can take many forms. In the case we shall
consider here, we consider only the effect of surface tension σ, and we write the potential
energy functional as

U
[
u(x, y, t)

]
= σ

∫
dS

= U0 + 1
2

∫
dA (∇u)2 + . . . . (14.132)

The kinetic energy functional is

T
[
u(x, y, t)

]
= 1

2

∫
dAµ(x) (∂tu)

2 . (14.133)

Thus, the action is

S
[
u(x, t)

]
=

∫
d2xL(u,∇u, ∂tu,x) , (14.134)

where the Lagrangian density is

L = 1
2µ(x) (∂tu)

2 − 1
2σ(x) (∇u)2 , (14.135)

where here we have allowed both µ(x) and σ(x) to depend on the spatial coordinates. The
equations of motion are

0 =
∂

∂t

∂L
∂ ∂tu

+ ∇ · ∂L
∂∇u

− ∂L
∂u

(14.136)

= µ(x)
∂2u

∂t2
−∇ ·

{
σ(x)∇u

}
. (14.137)
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14.5.2 Helmholtz equation

When µ and σ are each constant, we obtain the Helmholtz equation:

(
∇2 − 1

c2
∂2

∂t2

)
u(x, t) = 0 , (14.138)

with c =
√
σ/µ. The d’Alembert solution still works – waves of arbitrary shape can

propagate in a fixed direction k̂:

u(x, t) = f(k̂ · x− ct) . (14.139)

This is called a plane wave because the three dimensional generalization of this wave has
wavefronts which are planes. In our case, it might better be called a line wave, but people
will look at you funny if you say that, so we’ll stick with plane wave. Note that the locus
of points of constant f satisfies

φ(x, t) = k̂ · x− ct = constant , (14.140)

and setting dφ = 0 gives

k̂ · dx
dt

= c , (14.141)

which means that the velocity along k̂ is c. The component of x perpendicular to k̂ is
arbitrary, hence the regions of constant φ correspond to lines which are orthogonal to k̂.

Owing to the linearity of the wave equation, we can construct arbitrary superpositions of
plane waves. The most general solution is written

u(x, t) =

∫
d2k

(2π)2

[
A(k) ei(k·x−ckt) +B(k) ei(k·x+ckt)

]
. (14.142)

The first term in the bracket on the RHS corresponds to a plane wave moving in the +k̂
direction, and the second term to a plane wave moving in the −k̂ direction.

14.5.3 Rectangles

Consider a rectangular membrane where x ∈ [0, a] and y ∈ [0, b], and subject to the bound-
ary conditions u(0, y) = u(a, y) = u(x, 0) = u(x, b) = 0. We try a solution of the form

u(x, y, t) = X(x)Y (y)T (t) . (14.143)

This technique is known as separation of variables. Dividing the Helmholtz equation by u
then gives

1

X

∂2X

∂x2
+

1

Y

∂2Y

∂y2
=

1

c2
1

T

∂2T

∂t2
. (14.144)
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The first term on the LHS depends only on x. The second term on the LHS depends only
on y. The RHS depends only on t. Therefore, each of these terms must individually be
constant. We write

1

X

∂2X

∂x2
= −k2

x ,
1

Y

∂2Y

∂y2
= −k2

y ,
1

T

∂2T

∂t2
= −ω2 , (14.145)

with

k2
x + k2

y =
ω2

c2
. (14.146)

Thus, ω = ±c|k|. The most general solution is then

X(x) = A cos(kxx) +B sin(kxx) (14.147)

Y (y) = C cos(kyy) +D sin(kyy) (14.148)

T (t) = E cos(ωt) +B sin(ωt) . (14.149)

The boundary conditions now demand

A = 0 , C = 0 , sin(kxa) = 0 , sin(kyb) = 0 . (14.150)

Thus, the most general solution subject to the boundary conditions is

u(x, y, t) =

∞∑

m=1

∞∑

n=1

Amn sin

(
mπx

a

)
sin

(
nπy

b

)
cos
(
ωmnt+ δmn

)
, (14.151)

where

ωmn =

√(
mπc

a

)2
+

(
nπc

b

)2
. (14.152)

14.5.4 Circles

For a circular membrane, such as a drumhead, it is convenient to work in two-dimensional
polar coordinates (r, ϕ). The Laplacian is then

∇2 =
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂ϕ2
. (14.153)

We seek a solution to the Helmholtz equation which satisfies the boundary conditions u(r =
a, ϕ, t) = 0. Once again, we invoke the separation of variables method, writing

u(r, ϕ, t) = R(r)Φ(ϕ)T (t) , (14.154)

resulting in
1

R

1

r

∂

∂r

(
r
∂R

∂r

)
+

1

r2
1

Φ

∂2Φ

∂ϕ2
=

1

c2
1

T

∂2T

∂t2
. (14.155)

The azimuthal and temporal functions are

Φ(ϕ) = eimϕ , T (t) = cos(ωt+ δ) , (14.156)
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where m is an integer in order that the function u(r, ϕ, t) be single-valued. The radial
equation is then

∂2R

∂r2
+

1

r

∂R

∂r
+

(
ω2

c2
− m2

r2

)
R = 0 . (14.157)

This is Bessel’s equation, with solution

R(r) = AJm

(ωr
c

)
+BNm

(ωr
c

)
, (14.158)

where Jm(z) and Nm(z) are the Bessel and Neumann functions of order m, respectively.
Since the Neumann functions diverge at r = 0, we must exclude them, setting B = 0 for
each m.

We now invoke the boundary condition u(r = a, ϕ, t) = 0. This requires

Jm

(ωa
c

)
= 0 =⇒ ω = ωmℓ = xmℓ

c

a
, (14.159)

where Jm(xmℓ) = 0, i.e. xmℓ is the ℓth zero of Jm(x). The mose general solution is therefore

u(r, ϕ, t) =

∞∑

m=0

∞∑

ℓ=1

Amℓ Jm
(
xmℓ r/a

)
cos
(
mϕ+ βmℓ

)
cos(ωmℓ t+ δmℓ

)
. (14.160)

14.5.5 Sound in fluids

Let ̺(x, t) and v(x, t) be the density and velocity fields in a fluid. Mass conservation
requires

∂̺

∂t
+ ∇ · (̺v) = 0 . (14.161)

This is the continuity equation for mass.

Focus now on a small packet of fluid of infinitesimal volume dV . The total force on this
fluid element is dF =

(
−∇p+ ̺ g

)
dV . By Newton’s Second Law,

dF =
(
̺ dV

) dv
dt

(14.162)

Note that the chain rule gives

dv

dt
=
∂v

∂t
+
(
v ·∇

)
v . (14.163)

Thus, dividing eqn, 14.162 by dV , we obtain

̺

(
∂v

∂t
+
(
v ·∇

)
v

)
= −∇p+ ̺ g . (14.164)

This is the inviscid (i.e. zero viscosity) form of the Navier-Stokes equation.
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Locally the fluid can also be described in terms of thermodynamic variables p(x, t) (pressure)
and T (x, t) (temperature). For a one-component fluid there is necessarily an equation of
state of the form p = p(̺, T ). Thus, we may write

dp =
∂p

∂̺

∣∣∣∣
T

d̺+
∂p

∂T

∣∣∣∣
̺

dT . (14.165)

We now make the following approximations. First, we assume that the fluid is close to
equilibrium at v = 0, meaning we write p = p̄+ δp and ̺ = ¯̺+ δ̺, and assume that δp, δ̺,
and v are small. The smallness of v means we can neglect the nonlinear term (v ·∇)v in
eqn. 14.164. Second, we neglect gravity (more on this later). The continuity equation then
takes the form

∂ δ̺

∂t
+ ¯̺∇ · v = 0 , (14.166)

and the Navier-Stokes equation becomes

¯̺
∂v

∂t
= −∇δp . (14.167)

Taking the time derivative of the former, and then invoking the latter of these equations
yields

∂2 δ̺

∂t2
= ∇2p =

(
∂p

∂̺

)
∇2 δ̺ ≡ c2∇2δ̺ . (14.168)

The speed of wave propagation, i.e. the speed of sound, is given by

c =

√
∂p

∂̺
. (14.169)

Finally, we must make an assumption regarding the conditions under which the derivative
∂p/∂̺ is computed. If the fluid is an excellent conductor of heat, then the temperature will
equilibrate quickly and it is a good approximation to take the derivative at fixed temper-
ature. The resulting value of c is called the isothermal sound speed cT . If, on the other
hand, the fluid is a poor conductor of heat, as is the case for air, then it is more appropriate
to take the derivative at constant entropy, yielding the adiabatic sound speed. Thus,

cT =

√(
∂p

∂̺

)

T

, cS =

√(
∂p

∂̺

)

S

. (14.170)

In an ideal gas, cS/cT =
√
γ, where γ = cp/cV is the ratio of the specific heat at constant

pressure to that at constant volume. For a (mostly) diatomic gas like air (comprised of N2

and O2 and just a little Ar), γ = 7
5 . Note that one can write c2 = 1/̺κ, where

κ =
1

̺

(
∂̺

∂p

)
(14.171)

is the compressibility , which is the inverse of the bulk modulus. Again, one must specify
whether one is talking about κT or κS . For reference in air at T = 293K, using M =
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28.8 g/mol, one obtains cT = 290.8m/s and cS = 344.0m/s. In H2O at 293K, c = 1482m/s.
In Al at 273K, c = 6420m/s.

If we retain gravity, the wave equation becomes

∂2δ̺

∂t2
= c2∇2δ̺− g ·∇δ̺ . (14.172)

The dispersion relation is then

ω(k) =
√
c2k2 + ig · k . (14.173)

We are permitted to ignore the effects of gravity so long as c2k2 ≫ gk. In terms of the
wavelength λ = 2π/k, this requires

λ≪ 2πc2

g
= 75.9 km (at T = 293K) . (14.174)

14.6 Dispersion

The one-dimensional Helmholtz equation ∂2
x y = c−2 ∂2

t y is solved by a plane wave

y(x, t) = Aeikx e−iωt , (14.175)

provided ω = ±ck. We say that there are two branches to the dispersion relation ω(k)
for this equation. In general, we may add solutions, due to the linearity of the Helmholtz
equation. The most general solution is then

y(x, t) =

∞∫

−∞

dk

2π

[
f̂(k) eik(x−ct) + ĝ(k) eik(x+ct)

]

= f(x− ct) + g(x+ ct) , (14.176)

which is consistent with d’Alembert’s solution.

Consider now the free particle Schrödinger equation in one space dimension,

i~
∂ψ

∂t
= − ~

2

2m

∂2ψ

∂x2
. (14.177)

The function ψ(x, t) is the quantum mechanical wavefunction for a particle of mass m
moving freely along a one-dimensional line. The probability density for finding the particle
at position x at time t is

ρ(x, t) =
∣∣ψ(x, t)

∣∣2 . (14.178)

Conservation of probability therefore requires

∞∫

−∞

dx
∣∣ψ(x, t)

∣∣2 = 1 . (14.179)
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This condition must hold at all times t.

As is the case with the Helmholtz equation, the Schrödinger equation is solved by a plane
wave of the form

ψ(x, t) = Aeikx e−iωt , (14.180)

where the dispersion relation now only has one branch, and is given by

ω(k) =
~k2

2m
. (14.181)

The most general solution is then

ψ(x, t) =

∞∫

−∞

dk

2π
ψ̂(k) eikx e−i~k

2t/2m . (14.182)

Let’s suppose we start at time t = 0 with a Gaussian wavepacket,

ψ(x, 0) =
(
πℓ20
)−1/4

e−x
2/2ℓ20 eik0x . (14.183)

To find the amplitude ψ̂(k), we perform the Fourier transform:

ψ̂(k) =

∞∫

−∞

dxψ(x, 0) e−ikx

=
√

2
(
πℓ20
)−1/4

e−(k−k0)2ℓ20/2 . (14.184)

We now compute ψ(x, t) valid for all times t:

ψ(x, t) =
√

2
(
πℓ20
)−1/4

∞∫

−∞

dk

2π
eikx e−(k−k0)2ℓ20/2 eikx e−i~k

2t/2m (14.185)

=
(
πℓ20
)−1/4 (

1 + it/τ
)−1/2

exp

[
−
(
x− ~k0t/m

)2

2 ℓ20
(
1 + t2/τ2

)
]

× exp

[
i
(
2k0 ℓ

2
0 x+ x2 t/τ − k2

0 ℓ
4
0 t/τ

)

2 ℓ20
(
1 + t2/τ2

)
]
, (14.186)

where τ ≡ mℓ20/~. The probability density is then the normalized Gaussian

ρ(x, t) =
1√
π ℓ2(t)

e−(x−v0t)2/ℓ2(t) , (14.187)

where v0 = ~k0/m and

ℓ(t) = ℓ0
√

1 + t2/τ2 . (14.188)

Note that ℓ(t) gives the width of the wavepacket, and that this width increases as a function

of time, with ℓ(t≫ τ) ≃ ℓ0 t/τ .
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Figure 14.9: Wavepacket spreading for k0 ℓ0 = 2 with t/τ = 0, 2, 4, 6, and 8.

Unlike the case of the Helmholtz equation, the solution to the Schrödinger equation does not
retain its shape as it moves. This phenomenon is known as the spreading of the wavepacket .
In fig. 14.9, we show the motion and spreading of the wavepacket.

For a given plane wave eikx e−iω(k)t, the wavefronts move at the phase velocity

vp(k) =
ω(k)

k
. (14.189)

The center of the wavepacket, however, travels at the group velocity

vg(k) =
dω

dk

∣∣∣∣
k0

, (14.190)

where k = k0 is the maximum of
∣∣ψ̂(k)

∣∣2.

14.7 Appendix I : Three Strings

Problem: Three identical strings are connected to a ring of mass m as shown in fig. 14.10.
The linear mass density of each string is σ and each string is under identical tension τ . In
equilibrium, all strings are coplanar. All motion on the string is in the ẑ-direction, which is
perpendicular to the equilibrium plane. The ring slides frictionlessly along a vertical pole.

It is convenient to describe each string as a half line [−∞, 0]. We can choose coordinates

x1, x2, and x3 for the three strings, respectively. For each string, the ring lies at xi = 0.
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A pulse is sent down the first string. After a time, the pulse arrives at the ring. Transmitted
waves are sent down the other two strings, and a reflected wave down the first string. The
solution to the wave equation in the strings can be written as follows. In string #1, we have

z = f(ct− x1) + g(ct + x1) . (14.191)

In the other two strings, we may write z = hA(ct+ x2) and z = hB(ct+ x3), as indicated in
the figure.

Figure 14.10: Three identical strings arranged symmetrically in a plane, attached to a
common end. All motion is in the direction perpendicular to this plane. The red ring,
whose mass is m, slides frictionlessly in this direction along a pole.

(a) Write the wave equation in string #1. Define all constants.

(b) Write the equation of motion for the ring.

(c) Solve for the reflected wave g(ξ) in terms of the incident wave f(ξ). You may write this
relation in terms of the Fourier transforms f̂(k) and ĝ(k).

(d) Suppose a very long wavelength pulse of maximum amplitude A is incident on the ring.
What is the maximum amplitude of the reflected pulse? What do we mean by “very long
wavelength”?

Solution:
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(a) The wave equation is
∂2z

∂x2
=

1

c2
∂2z

∂t2
, (14.192)

where x is the coordinate along the string, and c =
√
τ/σ is the speed of wave propagation.

(b) Let Z be the vertical coordinate of the ring. Newton’s second law says mZ̈ = F , where
the force on the ring is the sum of the vertical components of the tension in the three strings
at x = 0:

F = −τ
[
− f ′(ct) + g′(ct) + h′A(ct) + h′B(ct)

]
, (14.193)

where prime denotes differentiation with respect to argument.

(c) To solve for the reflected wave, we must eliminate the unknown functions hA,B and
then obtain g in terms of f . This is much easier than it might at first seem. We start by
demanding continuity at the ring. This means

Z(t) = f(ct) + g(ct) = hA(ct) = hB(ct) (14.194)

for all t. We can immediately eliminate hA,B:

hA(ξ) = hB(ξ) = f(ξ) + g(ξ) , (14.195)

for all ξ. Newton’s second law from part (b) may now be written as

mc2
[
f ′′(ξ) + g′′(ξ)

]
= −τ

[
f ′(ξ) + 3g′(ξ)

]
. (14.196)

This linear ODE becomes a simple linear algebraic equation for the Fourier transforms,

f(ξ) =

∞∫

−∞

dk

2π
f̂(k) eikξ , (14.197)

etc. We readily obtain

ĝ(k) = −
(
k − iQ
k − 3iQ

)
f̂(k) , (14.198)

where Q ≡ τ/mc2 has dimensions of inverse length. Since hA,B = f + g, we have

ĥA(k) = ĥB(k) = −
(

2iQ

k − 3iQ

)
f̂(k) . (14.199)

(d) For a very long wavelength pulse, composed of plane waves for which |k| ≪ Q, we
have ĝ(k) ≈ −1

3 f̂(k). Thus, the reflected pulse is inverted, and is reduced by a factor 1
3 in

amplitude. Note that for a very short wavelength pulse, for which k ≫ Q, we have perfect
reflection with inversion, and no transmission. This is due to the inertia of the ring.

It is straightforward to generalize this problem to one with n strings. The transmission
into each of the (n − 1) channels is of course identical (by symmetry). One then finds the
reflection and transmission amplitudes

r(k) = −
(
k − i(n− 2)Q

k − inQ

)
, t(k) = −

(
2iQ

k − inQ

)
. (14.200)
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Conservation of energy means that the sum of the squares of the reflection amplitude and
all the (n− 1) transmission amplitudes must be unity:

∣∣r(k)
∣∣2 + (n− 1)

∣∣t(k)
∣∣2 = 1 . (14.201)

14.8 Appendix II : General Field Theoretic Formulation

Continuous systems possess an infinite number of degrees of freedom. They are described
by a set of fields φa(x, t) which depend on space and time. These fields may represent
local displacement, pressure, velocity, etc. The equations of motion of the fields are again
determined by extremizing the action, which, in turn, is an integral of the Lagrangian

density over all space and time. Extremization yields a set of (generally coupled) partial

differential equations.

14.8.1 Euler-Lagrange equations for classical field theories

Suppose φa(x) depends on n independent variables, {x1, x2, . . . , xn}. Consider the func-
tional

S
[
{φa(x)

]
=

∫

Ω

dxL(φa ∂µφa,x) , (14.202)

i.e. the Lagrangian density L is a function of the fields φa and their partial derivatives
∂φa/∂xµ. Here Ω is a region in Rn. Then the first variation of S is

δS =

∫

Ω

dx

{
∂L
∂φa

δφa +
∂L

∂(∂µφa)

∂ δφa
∂xµ

}

=

∮

∂Ω

dΣ nµ
∂L

∂(∂µφa)
δφa +

∫

Ω

dx

{
∂L
∂φa
− ∂

∂xµ

(
∂L

∂(∂µφa)

)}
δφa , (14.203)

where ∂Ω is the (n− 1)-dimensional boundary of Ω, dΣ is the differential surface area, and

nµ is the unit normal. If we demand ∂L/∂(∂µφa)
∣∣
∂Ω

= 0 of δφa
∣∣
∂Ω

= 0, the surface term
vanishes, and we conclude

δS

δφa(x)
=

[
∂L
∂φa
− ∂

∂xµ

(
∂L

∂(∂µφa)

)]

x

, (14.204)

where the subscript means we are to evaluate the term in brackets at x. In a mechanical
system, one of the n independent variables (usually x0), is the time t. However, we may
be interested in a time-independent context in which we wish to extremize the energy
functional, for example. In any case, setting the first variation of S to zero yields the
Euler-Lagrange equations,

δS = 0 ⇒ ∂L
∂φa
− ∂

∂xµ

(
∂L

∂(∂µφa)

)
= 0 (14.205)
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The Lagrangian density for an electromagnetic field with sources is

L = − 1
16π Fµν F

µν − JµAµ . (14.206)

The equations of motion are then

∂L
∂Aν

− ∂

∂xν

(
∂L

∂(∂µAν)

)
= 0 ⇒ ∂µ F

µν = 4πJν , (14.207)

which are Maxwell’s equations.

14.8.2 Conserved currents in field theory

Recall the result of Noether’s theorem for mechanical systems:

d

dt

(
∂L

∂q̇σ

∂q̃σ
∂ζ

)

ζ=0

= 0 , (14.208)

where q̃σ = q̃σ(q, ζ) is a one-parameter (ζ) family of transformations of the generalized
coordinates which leaves L invariant. We generalize to field theory by replacing

qσ(t) −→ φa(x, t) , (14.209)

where {φa(x, t)} are a set of fields, which are functions of the independent variables {x, y, z, t}.
We will adopt covariant relativistic notation and write for four-vector xµ = (ct, x, y, z). The
generalization of dQ/dt = 0 is

∂

∂xµ

(
∂L

∂ (∂µφa)

∂φ̃a
∂ζ

)

ζ=0

= 0 , (14.210)

where there is an implied sum on both µ and a. We can write this as ∂µ J
µ = 0, where

Jµ ≡ ∂L
∂ (∂µφa)

∂φ̃a
∂ζ

∣∣∣∣∣
ζ=0

. (14.211)

We call Q = J0/c the total charge. If we assume J = 0 at the spatial boundaries of our
system, then integrating the conservation law ∂µ J

µ over the spatial region Ω gives

dQ

dt
=

∫

Ω

d3x ∂0 J
0 = −

∫

Ω

d3x∇ · J = −
∮

∂Ω

dΣ n̂ · J = 0 , (14.212)

assuming J = 0 at the boundary ∂Ω.

As an example, consider the case of a complex scalar field, with Lagrangian density2

L(ψ, , ψ∗, ∂µψ, ∂µψ
∗) = 1

2K (∂µψ
∗)(∂µψ)− U

(
ψ∗ψ

)
. (14.213)

2We raise and lower indices using the Minkowski metric gµν = diag (+,−,−,−).
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This is invariant under the transformation ψ → eiζ ψ, ψ∗ → e−iζ ψ∗. Thus,

∂ψ̃

∂ζ
= i eiζ ψ ,

∂ψ̃∗

∂ζ
= −i e−iζ ψ∗ , (14.214)

and, summing over both ψ and ψ∗ fields, we have

Jµ =
∂L

∂ (∂µψ)
· (iψ) +

∂L
∂ (∂µψ∗)

· (−iψ∗)

=
K

2i

(
ψ∗∂µψ − ψ ∂µψ∗) . (14.215)

The potential, which depends on |ψ|2, is independent of ζ. Hence, this form of conserved
4-current is valid for an entire class of potentials.

14.8.3 Gross-Pitaevskii model

As one final example of a field theory, consider the Gross-Pitaevskii model, with

L = i~ψ∗ ∂ψ
∂t
− ~

2

2m
∇ψ∗ ·∇ψ − g

(
|ψ|2 − n0

)2
. (14.216)

This describes a Bose fluid with repulsive short-ranged interactions. Here ψ(x, t) is again
a complex scalar field, and ψ∗ is its complex conjugate. Using the Leibniz rule, we have

δS[ψ∗, ψ] = S[ψ∗ + δψ∗, ψ + δψ]

=

∫
dt

∫
ddx

{
i~ψ∗ ∂δψ

∂t
+ i~ δψ∗ ∂ψ

∂t
− ~2

2m
∇ψ∗ ·∇δψ − ~2

2m
∇δψ∗ ·∇ψ

− 2g
(
|ψ|2 − n0

)
(ψ∗δψ + ψδψ∗)

}

=

∫
dt

∫
ddx

{[
− i~ ∂ψ

∗

∂t
+

~
2

2m
∇2ψ∗ − 2g

(
|ψ|2 − n0

)
ψ∗
]
δψ

+

[
i~
∂ψ

∂t
+

~2

2m
∇2ψ − 2g

(
|ψ|2 − n0

)
ψ

]
δψ∗

}
, (14.217)

where we have integrated by parts where necessary and discarded the boundary terms.
Extremizing S[ψ∗, ψ] therefore results in the nonlinear Schrödinger equation (NLSE),

i~
∂ψ

∂t
= − ~

2

2m
∇2ψ + 2g

(
|ψ|2 − n0

)
ψ (14.218)

as well as its complex conjugate,

−i~ ∂ψ
∗

∂t
= − ~

2

2m
∇2ψ∗ + 2g

(
|ψ|2 − n0

)
ψ∗ . (14.219)
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Note that these equations are indeed the Euler-Lagrange equations:

δS

δψ
=
∂L
∂ψ
− ∂

∂xµ

(
∂L
∂ ∂µψ

)
(14.220)

δS

δψ∗ =
∂L
∂ψ∗ −

∂

∂xµ

(
∂L

∂ ∂µψ∗

)
, (14.221)

with xµ = (t,x)3 Plugging in

∂L
∂ψ

= −2g
(
|ψ|2 − n0

)
ψ∗ ,

∂L
∂ ∂tψ

= i~ψ∗ ,
∂L
∂∇ψ

= − ~
2

2m
∇ψ∗ (14.222)

and

∂L
∂ψ∗ = i~ψ − 2g

(
|ψ|2 − n0

)
ψ ,

∂L
∂ ∂tψ∗ = 0 ,

∂L
∂∇ψ∗ = − ~

2

2m
∇ψ , (14.223)

we recover the NLSE and its conjugate.

The Gross-Pitaevskii model also possesses a U(1) invariance, under

ψ(x, t)→ ψ̃(x, t) = eiζ ψ(x, t) , ψ∗(x, t)→ ψ̃∗(x, t) = e−iζ ψ∗(x, t) . (14.224)

Thus, the conserved Noether current is then

Jµ =
∂L
∂ ∂µψ

∂ψ̃

∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂ ∂µψ∗
∂ψ̃∗

∂ζ

∣∣∣∣∣
ζ=0

J0 = −~ |ψ|2 (14.225)

J = − ~
2

2im

(
ψ∗

∇ψ − ψ∇ψ∗) . (14.226)

Dividing out by ~, taking J0 ≡ −~ρ and J ≡ −~j, we obtain the continuity equation,

∂ρ

∂t
+ ∇ · j = 0 , (14.227)

where

ρ = |ψ|2 , j =
~

2im

(
ψ∗

∇ψ − ψ∇ψ∗) . (14.228)

are the particle density and the particle current, respectively.

3In the nonrelativistic case, there is no utility in defining x0 = ct, so we simply define x0 = t.
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14.9 Appendix III : Green’s Functions

Suppose we add a forcing term,

µ(x)
∂2y

∂t2
− ∂

∂x

[
τ(x)

∂y

∂x

]
+ v(x) y = Re

[
µ(x) f(x) e−iωt

]
. (14.229)

We write the solution as
y(x, t) = Re

[
y(x) e−iωt

]
, (14.230)

where

− d

dx

[
τ(x)

dy(x)

dx

]
+ v(x) y(x) − ω2 µ(x) y(x) = µ(x) f(x) , (14.231)

or [
K − ω2µ(x)

]
y(x) = µ(x) f(x) , (14.232)

where K is a differential operator,

K ≡ − d

dx
τ(x)

d

dx
+ v(x) . (14.233)

Note that the eigenfunctions of K are the {ψn(x)}:

K ψn(x) = ω2
n µ(x)ψn(x) . (14.234)

The formal solution to equation 14.232 is then

y(x) =
[
K − ω2µ

]−1

x,x′
µ(x′) f(x′) (14.235)

=

xb∫

xa

dx′ µ(x′)Gω(x, x′) f(x′). (14.236)

What do we mean by the term in brackets? If we define the Green’s function

Gω(x, x′) ≡
[
K − ω2µ

]−1

x,x′
, (14.237)

what this means is [
K − ω2µ(x)

]
Gω(x, x′) = δ(x− x′) . (14.238)

Note that the Green’s function may be expanded in terms of the (real) eigenfunctions, as

Gω(x, x′) =
∑

n

ψn(x)ψn(x
′)

ω2
n − ω2

, (14.239)

which follows from completeness of the eigenfunctions:

µ(x)

∞∑

n=1

ψn(x)ψn(x
′) = δ(x− x′) . (14.240)



280 CHAPTER 14. CONTINUUM MECHANICS

The expansion in eqn. 14.239 is formally exact, but difficult to implement, since it requires
summing over an infinite set of eigenfunctions. It is more practical to construct the Green’s
function from solutions to the homogeneous Sturm Liouville equation, as follows. When
x 6= x′, we have that (K −ω2µ)Gω(x, x′) = 0, which is a homogeneous ODE of degree two.
Consider first the interval x ∈ [xa, x

′]. A second order homogeneous ODE has two solutions,

and further invoking the boundary condition at x = xa, there is a unique solution, up to
a multiplicative constant. Call this solution y1(x). Next, consider the interval x ∈ [x′, xb].
Once again, there is a unique solution to the homogeneous Sturm-Liouville equation, up
to a multiplicative constant, which satisfies the boundary condition at x = xb. Call this

solution y2(x). We then can write

Gω(x, x′) =





A(x′) y1(x) if xa ≤ x < x′

B(x′) y2(x) if x′ < x ≤ xb .
(14.241)

Here, A(x′) and B(x′) are undetermined functions. We now invoke the inhomogeneous
Sturm-Liouville equation,

− d

dx

[
τ(x)

dGω(x, x′)
dx

]
+ v(x)Gω(x, x′)− ω2µ(x)Gω(x, x′) = δ(x − x′) . (14.242)

We integrate this from x = x′ − ǫ to x = x′ + ǫ, where ǫ is a positive infinitesimal. This
yields

τ(x′)
[
A(x′) y′1(x

′)−B(x′) y′2(x
′)
]

= 1 . (14.243)

Continuity of Gω(x, x′) itself demands

A(x′) y1(x
′) = B(x′) y2(x

′) . (14.244)

Solving these two equations for A(x′) and B(x′), we obtain

A(x′) = − y2(x
′)

τ(x′)Wy1,y2
(x′)

, B(x′) = − y1(x
′)

τ(x′)Wy1,y2
(x′)

, (14.245)

where Wy1,y2
(x) is the Wronskian

Wy1,y2
(x) = det



y1(x) y2(x)

y′1(x) y′2(x)




= y1(x) y
′
2(x)− y2(x) y

′
1(x) . (14.246)

Now it is easy to show that Wy1,y2
(x) τ(x) =W τ is a constant. This follows from the fact

that

0 = y2K y1 − y2K y1

=
d

dx

{
τ(x)

[
y1 y

′
2 − y2 y

′
1

]}
. (14.247)
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Thus, we have

Gω(x, x′) =





−y1(x) y2(x
′)/W if xa ≤ x < x′

−y1(x
′) y2(x)/W if x′ < x ≤ xb ,

(14.248)

or, in compact form,

Gω(x, x′) = −y1(x<) y2(x>)

W τ
, (14.249)

where x< = min(x, x′) and x> = max(x, x′).

As an example, consider a uniform string (i.e. µ and τ constant, v = 0) with fixed endpoints
at xa = 0 and xb = L. The normalized eigenfunctions are

ψn(x) =

√
2

µL
sin

(
nπx

L

)
, (14.250)

and the eigenvalues are ωn = nπc/L. The Green’s function is

Gω(x, x′) =
2

µL

∞∑

n=1

sin(nπx/L) sin(nπx′/L)

(nπc/L)2 − ω2
. (14.251)

Now construct the homogeneous solutions:

(K − ω2µ) y1 = 0 , y1(0) = 0 =⇒ y1(x) = sin

(
ωx

c

)
(14.252)

(K − ω2µ) y2 = 0 , y2(L) = 0 =⇒ y2(x) = sin

(
ω(L− x)

c

)
. (14.253)

The Wronskian is

W = y1 y
′
2 − y2 y

′
1 = −ω

c
sin

(
ωL

c

)
. (14.254)

Therefore, the Green’s function is

Gω(x, x′) =
sin
(
ωx</c

)
sin
(
ω(L− x>)/c

)

(ωτ/c) sin(ωL/c)
. (14.255)

14.9.1 Perturbation theory

Suppose we have solved for the Green’s function for the linear operator K0 and mass density
µ0(x). I.e. we have (

K0 − ω2µ0(x)
)
G0
ω(x, x′) = δ(x− x′) . (14.256)

We now imagine perturbing τ0 → τ0 +λτ1, v0 → v0 +λv2, µ0 → µ0 +λµ1. What is the new
Green’s function Gω(x, x′)? We must solve

(
L0 + λL1

)
Gω(x, x′) = δ(x− x′) , (14.257)
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Figure 14.11: Diagrammatic representation of the perturbation expansion in eqn. 14.260..

where

L0
ω ≡ K0 − ω2 µ0 (14.258)

L1
ω ≡ K1 − ω2 µ1 . (14.259)

Dropping the ω subscript for simplicity, the full Green’s function is then given by

Gω =
[
L0
ω + λL1

ω

]−1

=
[ (
G0
ω

)−1
+ λL1

ω

]−1

=
[
1 + λG0

ω L
1
ω

]−1
G0
ω

= G0
ω − λG0

ω L
1
ω G

0
ω + λ2G0

ω L
1
ω G

0
ω L

1
ωG

0
ω + . . . . (14.260)

The ‘matrix multiplication’ is of course a convolution, i.e.

Gω(x, x′) = G0
ω(x, x′)− λ

xb∫

xa

dx1G
0
ω(x, x1)L

1
ω

(
x1,

d
dx1

)
G0
ω(x1, x

′) + . . . . (14.261)

Each term in the perturbation expansion of eqn. 14.260 may be represented by a diagram,
as depicted in Fig. 14.11.

As an example, consider a string with xa = 0 and xb = L with a mass point m affixed at
the point x = d. Thus, µ1(x) = mδ(x − d), and L1

ω = −mω2 δ(x − d), with λ = 1. The
perturbation expansion gives

Gω(x, x′) = G0
ω(x, x′) +mω2G0

ω(x, d)G0
ω(d, x′) +m2ω4G0

ω(x, d)G0
ω(d, d)G0

ω(d, x′) + . . .

= G0
ω(x, x′) +

mω2G0
ω(x, d)G0

ω(d, x′)
1−mω2G0

ω(d, d)
. (14.262)
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Note that the eigenfunction expansion,

Gω(x, x′) =
∑

n

ψn(x)ψn(x
′)

ω2
n − ω2

, (14.263)

says that the exact eigenfrequencies are poles of Gω(x, x′), and furthermore the residue at
each pole is

Res
ω=ωn

Gω(x, x′) = − 1

2ωn
ψn(x)ψn(x

′) . (14.264)

According to eqn. 14.262, the poles of Gω(x, x′) are located at solutions to4

mω2G0
ω(d, d) = 1 . (14.265)

For simplicity let us set d = 1
2L, so the mass point is in the middle of the string. Then

according to eqn. 14.255,

G0
ω

(
1
2L,

1
2L
)

=
sin2(ωL/2c)

(ωτ/c) sin(ωL/c)

=
c

2ωτ
tan

(
ωL

2c

)
. (14.266)

The eigenvalue equation is therefore

tan

(
ωL

2c

)
=

2τ

mωc
, (14.267)

which can be manipulated to yield

m

M
λ = ctn λ , (14.268)

where λ = ωL/2c and M = µL is the total mass of the string. When m = 0, the LHS
vanishes, and the roots lie at λ = (n + 1

2)π, which gives ω = ω2n+1. Why don’t we see the
poles at the even mode eigenfrequencies ω2n? The answer is that these poles are present
in the Green’s function. They do not cancel for d = 1

2L because the perturbation does
not couple to the even modes, which all have ψ2n(

1
2L) = 0. The case of general d may be

instructive in this regard. One finds the eigenvalue equation

sin(2λ)

2λ sin
(
2ǫλ
)
sin
(
2(1 − ǫ)λ

) =
m

M
, (14.269)

where ǫ = d/L. Now setting m = 0 we recover 2λ = nπ, which says ω = ωn, and all the
modes are recovered.

4Note in particular that there is no longer any divergence at the location of the original poles of G0
ω(x, x′).

These poles are cancelled.
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14.9.2 Perturbation theory for eigenvalues and eigenfunctions

We wish to solve (
K0 + λK1

)
ψ = ω2

(
µ0 + λµ1

)
ψ , (14.270)

which is equivalent to
L0
ω ψ = −λL1

ω ψ . (14.271)

Multiplying by
(
L0
ω

)−1
= G0

ω on the left, we have

ψ(x) = −λ
xb∫

xa

dx′Gω(x, x′)L1
ω ψ(x′) (14.272)

= λ

∞∑

m=1

ψm(x)

ω2 − ω2
m

xb∫

xa

dx′ ψm(x′)L1
ω ψ(x′) . (14.273)

We are free to choose any normalization we like for ψ(x). We choose

〈
ψ
∣∣ψn

〉
=

xb∫

xa

dx µ0(x)ψn(x)ψ(x) = 1 , (14.274)

which entails

ω2 − ω2
n = λ

xb∫

xa

dxψn(x)L
1
ω ψ(x) (14.275)

as well as

ψ(x) = ψn(x) + λ
∑

k
(k 6=n)

ψk(x)

ω2 − ω2
k

xb∫

xa

dx′ ψk(x
′)L1

ω ψ(x′) . (14.276)

By expanding ψ and ω2 in powers of λ, we can develop an order by order perturbation
series.

To lowest order, we have

ω2 = ω2
n + λ

xb∫

xa

dxψn(x)L
1
ωn
ψn(x) . (14.277)

For the case L1
ω = −mω2 δ(x− d), we have

δωn
ωn

= −1
2m
[
ψn(d)

]2

= −m
M

sin2
(nπd
L

)
. (14.278)

For d = 1
2L, only the odd n modes are affected, as the even n modes have a node at x = 1

2L.
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Carried out to second order, one obtains for the eigenvalues,

ω2 = ω2
n + λ

xb∫

xa

dxψn(x)L
1
ωn
ψn(x)

+ λ2
∑

k
(k 6=n)

∣∣∣
∫ xb

xa
dxψk(x)L

1
ωn
ψn(x)

∣∣∣
2

ω2
n − ω2

k

+O(λ3)

− λ2

xb∫

xa

dxψn(x)L
1
ωn
ψn(x) ·

xb∫

xa

dx′ µ1(x
′)
[
ψn(x

′)
]2

+O(λ3) . (14.279)
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Chapter 15

Special Relativity

For an extraordinarily lucid, if characteristically brief, discussion, see chs. 1 and 2 of L. D.
Landau and E. M. Lifshitz, The Classical Theory of Fields (Course of Theoretical Physics,
vol. 2).

15.1 Introduction

All distances are relative in physics. They are measured with respect to a fixed frame of

reference. Frames of reference in which free particles move with constant velocity are called
inertial frames. The principle of relativity states that the laws of Nature are identical in
all inertial frames.

15.1.1 Michelson-Morley experiment

We learned how sound waves in a fluid, such as air, obey the Helmholtz equation. Let us
restrict our attention for the moment to solutions of the form φ(x, t) which do not depend
on y or z. We then have a one-dimensional wave equation,

∂2φ

∂x2
=

1

c2
∂2φ

∂t2
. (15.1)

The fluid in which the sound propagates is assumed to be at rest. But suppose the fluid
is not at rest. We can investigate this by shifting to a moving frame, defining x′ = x− ut,
with y′ = y, z′ = z and of course t′ = t. This is a Galilean transformation. In terms of the
new variables, we have

∂

∂x
=

∂

∂x′
,

∂

∂t
= −u ∂

∂x′
+

∂

∂t′
. (15.2)

The wave equation is then
(

1− u2

c2

)
∂2φ

∂x′2
=

1

c2
∂2φ

∂t′2
− 2u

c2
∂2φ

∂x′ ∂t′
. (15.3)

287
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Clearly the wave equation acquires a different form when expressed in the new variables
(x′, t′), i.e. in a frame in which the fluid is not at rest. The general solution is then of the
modified d’Alembert form,

φ(x′, t′) = f(x′ − cRt′) + g(x′ + cLt
′) , (15.4)

where cR = c − u and cL = c + u are the speeds of rightward and leftward propagating
disturbances, respectively. Thus, there is a preferred frame of reference – the frame in
which the fluid is at rest. In the rest frame of the fluid, sound waves travel with velocity c
in either direction.

Light, as we know, is a wave phenomenon in classical physics. The propagation of light is
described by Maxwell’s equations,

∇ ·E = 4πρ ∇×E = −1

c

∂B

∂t
(15.5)

∇ ·B = 0 ∇×B =
4π

c
j +

1

c

∂E

∂t
, (15.6)

where ρ and j are the local charge and current density, respectively. Taking the curl of
Faraday’s law, and restricting to free space where ρ = j = 0, we once again have (using a
Cartesian system for the fields) the wave equation,

∇2E =
1

c2
∂2E

∂t2
. (15.7)

(We shall discuss below, in section 15.8, the beautiful properties of Maxwell’s equations
under general coordinate transformations.)

In analogy with the theory of sound, it was assumed prior to Einstein that there was in
fact a preferred reference frame for electromagnetic radiation – one in which the medium
which was excited during the EM wave propagation was at rest. This notional medium was
called the lumineferous ether . Indeed, it was generally assumed during the 19th century
that light, electricity, magnetism, and heat (which was not understood until Boltzmann’s
work in the late 19th century) all had separate ethers. It was Maxwell who realized that
light, electricity, and magnetism were all unified phenomena, and accordingly he proposed
a single ether for electromagnetism. It was believed at the time that the earth’s motion
through the ether would result in a drag on the earth.

In 1887, Michelson and Morley set out to measure the changes in the speed of light on earth
due to the earth’s movement through the ether (which was generally assumed to be at rest
in the frame of the Sun). The Michelson interferometer is shown in fig. 15.1, and works as
follows. Suppose the apparatus is moving with velocity u x̂ through the ether. Then the
time it takes a light ray to travel from the half-silvered mirror to the mirror on the right
and back again is

tx =
ℓ

c+ u
+

ℓ

c− u =
2ℓc

c2 − u2
. (15.8)
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Figure 15.1: The Michelson-Morley experiment (1887) used an interferometer to effectively
measure the time difference for light to travel along two different paths. Inset: analysis for
the y-directed path.

For motion along the other arm of the interferometer, the geometry in the inset of fig. 15.1

shows ℓ′ =
√
ℓ2 + 1

4u
2t2y, hence

ty =
2ℓ′

c
=

2

c

√
ℓ2 + 1

4u
2t2y ⇒ ty =

2ℓ√
c2 − u2

. (15.9)

Thus, the difference in times along these two paths is

∆t = tx − ty =
2ℓc

c2
− 2ℓ√

c2 − u2
≈ ℓ

c
· u

2

c2
. (15.10)

Thus, the difference in phase between the two paths is

∆φ

2π
= ν∆t ≈ ℓ

λ
· u

2

c2
, (15.11)

where λ is the wavelength of the light. We take u ≈ 30 km/s, which is the earth’s orbital
velocity, and λ ≈ 5000 Å. From this we find that ∆φ ≈ 0.02 × 2π if ℓ = 1m. Michelson
and Morley found that the observed fringe shift ∆φ/2π was approximately 0.02 times the
expected value. The inescapable conclusion was that the speed of light did not depend on
the motion of the source. This was very counterintuitive!



290 CHAPTER 15. SPECIAL RELATIVITY

Figure 15.2: Experimental setup of Alvager et al. (1964), who used the decay of high energy
neutral pions to test the source velocity dependence of the speed of light.

The history of the development of special relativity is quite interesting, but we shall not have
time to dwell here on the many streams of scientific thought during those exciting times.
Suffice it to say that the Michelson-Morley experiment, while a landmark result, was not the
last word. It had been proposed that the ether could be dragged, either entirely or partially,
by moving bodies. If the earth dragged the ether along with it, then there would be no
ground-level ‘ether wind’ for the MM experiment to detect. Other experiments, however,
such as stellar aberration, in which the apparent position of a distant star varies due to the
earth’s orbital velocity, rendered the “ether drag” theory untenable – the notional ‘ether
bubble’ dragged by the earth could not reasonably be expected to extend to the distant
stars.

A more recent test of the effect of a moving source on the speed of light was performed
by T. Alv̊ager et al., Phys. Lett. 12, 260 (1964), who measured the velocity of γ-rays
(photons) emitted from the decay of highly energetic neutral pions (π0). The pion energies
were in excess of 6 GeV, which translates to a velocity of v = 0.99975 c, according to special
relativity. Thus, photons emitted in the direction of the pions should be traveling at close
to 2c, if the source and photon velocities were to add. Instead, the velocity of the photons
was found to be c = 2.9977± 0.0004× 1010 cm/s, which is within experimental error of the
best accepted value.

15.1.2 Einsteinian and Galilean relativity

The Principle of Relativity states that the laws of nature are the same when expressed in
any inertial frame. This principle can further be refined into two classes, depending on
whether one takes the velocity of the propagation of interactions to be finite or infinite.
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Figure 15.3: Two reference frames.

The interaction of matter in classical mechanics is described by a potential function U(r1, . . . , rN ).

Typically, one has two-body interactions in which case one writes U =
∑

i<j U(ri, rj). These
interactions are thus assumed to be instantaneous, which is unphysical. The interaction of
particles is mediated by the exchange of gauge bosons, such as the photon (for electro-
magnetic interactions), gluons (for the strong interaction, at least on scales much smaller
than the ‘confinement length’), or the graviton (for gravity). Their velocity of propagation,
according to the principle of relativity, is the same in all reference frames, and is given by
the speed of light, c = 2.998 × 108 m/s.

Since c is so large in comparison with terrestrial velocities, and since d/c is much shorter
than all other relevant time scales for typical interparticle separations d, the assumption
of an instantaneous interaction is usually quite accurate. The combination of the principle
of relativity with finiteness of c is known as Einsteinian relativity. When c = ∞, the
combination comprises Galilean relativity:

c <∞ : Einsteinian relativity

c =∞ : Galilean relativity .

Consider a train moving at speed u. In the rest frame of the train track, the speed of
the light beam emanating from the train’s headlight is c + u. This would contradict the
principle of relativity. This leads to some very peculiar consequences, foremost among them
being the fact that events which are simultaneous in one inertial frame will not in general
be simultaneous in another. In Newtonian mechanics, on the other hand, time is absolute,
and is independent of the frame of reference. If two events are simultaneous in one frame
then they are simultaneous in all frames. This is not the case in Einsteinian relativity!

We can begin to apprehend this curious feature of simultaneity by the following Gedanken-

experiment (a long German word meaning “thought experiment”)1. Consider the case in
fig. 15.3 in which frame K ′ moves with velocity u x̂ with respect to frame K. Let a source
at S emit a signal (a light pulse) at t = 0. In the frame K ′ the signal’s arrival at equidistant
locations A and B is simultaneous. In frame K, however, A moves toward left-propagating

1Unfortunately, many important physicists were German and we have to put up with a legacy of long
German words like Gedankenexperiment , Zitterbewegung , Brehmsstrahlung , Stosszahlansatz , Kartoffelsalat ,
etc.
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emitted wavefront, and B moves away from the right-propagating wavefront. For classical
sound, the speed of the left-moving and right-moving wavefronts is c∓u, taking into account
the motion of the source, and thus the relative velocities of the signal and the detectors
remain at c. But according to the principle of relativity, the speed of light is c in all frames,
and is so in frame K for both the left-propagating and right-propagating signals. Therefore,
the relative velocity of A and the left-moving signal is c+ u and the relative velocity of B
and the right-moving signal is c − u. Therefore, A ‘closes in’ on the signal and receives it
before B, which is moving away from the signal. We might expect the arrival times to be
t∗A = d/(c+ u) and t∗B = d/(c− u), where d is the distance between the source S and either
detector A or B in the K ′ frame. Later on we shall analyze this problem and show that

t∗A =

√
c− u
c+ u

· d
c

, t∗B =

√
c+ u

c− u ·
d

c
. (15.12)

Our näıve analysis has omitted an important detail – the Lorentz contraction of the distance
d as seen by an observer in the K frame.

15.2 Intervals

Now let us express mathematically the constancy of c in all frames. An event is specified
by the time and place where it occurs. Thus, an event is specified by four coordinates,
(t, x, y, z). The four-dimensional space spanned by these coordinates is called spacetime.

The interval between two events in spacetime at (t1, x1, y1, z1) and (t2, x2, y2, z2) is defined
to be

s12 =

√
c2(t1 − t2)2 − (x1 − x2)

2 − (y1 − y2)
2 − (z1 − z2)2 . (15.13)

For two events separated by an infinitesimal amount, the interval ds is infinitesimal, with

ds2 = c2 dt2 − dx2 − dy2 − dz2 . (15.14)

Now when the two events denote the emission and reception of an electromagnetic signal,
we have ds2 = 0. This must be true in any frame, owing to the invariance of c, hence since
ds and ds′ are differentials of the same order, we must have ds′2 = ds2. This last result
requires homogeneity and isotropy of space as well. Finally, if infinitesimal intervals are
invariant, then integrating we obtain s = s′, and we conclude that the interval between two

space-time events is the same in all inertial frames.

When s212 > 0, the interval is said to be time-like. For timelike intervals, we can always
find a reference frame in which the two events occur at the same locations. As an example,
consider a passenger sitting on a train. Event #1 is the passenger yawning at time t1. Event

#2 is the passenger yawning again at some later time t2. To an observer sitting in the train
station, the two events take place at different locations, but in the frame of the passenger,
they occur at the same location.

When s212 < 0, the interval is said to be space-like. Note that s12 =
√
s212 ∈ iR is pure

imaginary, so one says that imaginary intervals are spacelike. As an example, at this
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Figure 15.4: A (1 + 1)–dimensional light cone. The forward light cone consists of timelike
events with ∆t > 0. The backward light cone consists of timelike events with ∆t < 0. The
causally disconnected regions are time-like, and intervals connecting the origin to any point
on the light cone itself are light-like.

moment, in the frame of the reader, the North and South poles of the earth are separated
by a space-like interval. If the interval between two events is space-like, a reference frame
can always be found in which the events are simultaneous.

An interval with s12 = 0 is said to be light-like.

This leads to the concept of the light cone, depicted in fig. 15.4. Consider an event E. In the
frame of an inertial observer, all events with s2 > 0 and ∆t > 0 are in E’s forward light cone

and are part of his absolute future. Events with s2 > 0 and ∆t < 0 lie in E’s backward light

cone are are part of his absolute past . Events with spacelike separations s2 < 0 are causally

disconnected from E. Two events which are causally disconnected can not possible influence
each other. Uniform rectilinear motion is represented by a line t = x/v with constant slope.
If v < c, this line is contained within E’s light cone. E is potentially influenced by all events
in its backward light cone, i.e. its absolute past. It is impossible to find a frame of reference
which will transform past into future, or spacelike into timelike intervals.
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15.2.1 Proper time

Proper time is the time read on a clock traveling with a moving observer. Consider two
observers, one at rest and one in motion. If dt is the differential time elapsed in the rest
frame, then

ds2 = c2 dt2 − dx2 − dy2 − dz2 (15.15)

= c2 dt′2 , (15.16)

where dt′ is the differential time elapsed on the moving clock. Thus,

dt′ = dt

√
1− v

2

c2
, (15.17)

and the time elapsed on the moving observer’s clock is

t′2 − t′1 =

t2∫

t1

dt

√
1− v

2(t)

c2
. (15.18)

Thus, moving clocks run slower . This is an essential feature which is key to understanding
many important aspects of particle physics. A particle with a brief lifetime can, by moving
at speeds close to c, appear to an observer in our frame to be long-lived. It is customary to
define two dimensionless measures of a particle’s velocity:

β ≡ v
c

, γ ≡ 1√
1− β2

. (15.19)

As v → c, we have β → 1 and γ →∞.

Suppose we wish to compare the elapsed time on two clocks. We keep one clock at rest in
an inertial frame, while the other executes a closed path in space, returning to its initial
location after some interval of time. When the clocks are compared, the moving clock will
show a smaller elapsed time. This is often stated as the “twin paradox.” The total elapsed
time on a moving clock is given by

τ =
1

c

b∫

a

ds , (15.20)

where the integral is taken over the world line of the moving clock. The elapsed time τ
takes on a minimum value when the path from a to b is a straight line. To see this, one can
express τ

[
x(t)

]
as a functional of the path x(t) and extremize. This results in ẍ = 0.

15.2.2 Irreverent problem from Spring 2002 final exam

Flowers for Algernon – Bob’s beloved hamster, Algernon, is very ill. He has only three hours
to live. The veterinarian tells Bob that Algernon can be saved only through a gallbadder
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transplant. A suitable donor gallbladder is available from a hamster recently pronounced
brain dead after a blender accident in New York (miraculously, the gallbladder was un-
scathed), but it will take Life Flight five hours to bring the precious rodent organ to San
Diego.

Bob embarks on a bold plan to save Algernon’s life. He places him in a cage, ties the cage to
the end of a strong meter-long rope, and whirls the cage above his head while the Life Flight
team is en route. Bob reasons that if he can make time pass more slowly for Algernon, the
gallbladder will arrive in time to save his life.

(a) At how many revolutions per second must Bob rotate the cage in order that the gall-
bladder arrive in time for the life-saving surgery? What is Algernon’s speed v0?

Solution : We have β(t) = ω0R/c is constant, therefore, from eqn. 15.18,

∆t = γ∆t′ . (15.21)

Setting ∆t′ = 3hr and ∆t = 5hr, we have γ = 5
3 , which entails β =

√
1− γ−2 = 4

5 . Thus,

v0 = 4
5 c, which requires a rotation frequency of ω0/2π = 38.2MHz.

(b) Bob finds that he cannot keep up the pace! Assume Algernon’s speed is given by

v(t) = v0

√
1− t

T
(15.22)

where v0 is the speed from part (a), and T = 5h. As the plane lands at the pet hospital’s
emergency runway, Bob peers into the cage to discover that Algernon is dead! In order to
fill out his death report, the veterinarian needs to know: when did Algernon die? Assuming
he died after his own hamster watch registered three hours, derive an expression for the
elapsed time on the veterinarian’s clock at the moment of Algernon’s death.

Solution : 〈Sniffle〉. We have β(t) = 4
5

(
1− t

T

)1/2
. We set

T ′ =

T ∗∫

0

dt
√

1− β2(t) (15.23)

where T ′ = 3hr and T ∗ is the time of death in Bob’s frame. We write β0 = 4
5 and

γ0 = (1− β2
0)−1/2 = 5

3 . Note that T ′/T =
√

1− β2
0 = γ−1

0 .

Rescaling by writing ζ = t/T , we have

T ′

T
= γ−1

0 =

T ∗/T∫

0

dζ
√

1− β2
0 + β2

0 ζ

=
2

3β2
0

[(
1− β2

0 + β2
0

T ∗

T

)3/2

− (1− β2
0)3/2

]

=
2

3γ0
· 1

γ2
0 − 1

[(
1 + (γ2

0 − 1)
T ∗

T

)3/2

− 1

]
. (15.24)
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Solving for T ∗/T we have

T ∗

T
=

(
3
2 γ

2
0 − 1

2

)2/3
− 1

γ2
0 − 1

. (15.25)

With γ0 = 5
3 we obtain

T ∗

T
= 9

16

[(
11
3

)2/3 − 1
]

= 0.77502 . . . (15.26)

Thus, T ∗ = 3.875 hr = 3 hr 52 min 50.5 sec after Bob starts swinging.

(c) Identify at least three practical problems with Bob’s scheme.

Solution : As you can imagine, student responses to this part were varied and generally
sarcastic. E.g. “the atmosphere would ignite,” or “Bob’s arm would fall off,” or “Algernon’s
remains would be found on the inside of the far wall of the cage, squashed flatter than a
coat of semi-gloss paint,” etc.

15.3 Four-Vectors and Lorentz Transformations

We have spoken thus far about different reference frames. So how precisely do the coordi-
nates (t, x, y, z) transform between frames K and K ′? In classical mechanics, we have t = t′

and x = x′ + u t, according to fig. 15.3. This yields the Galilean transformation,




t
x
y
z


 =




1 0 0 0

ux 1 0 0

uy 0 1 0

uz 0 0 1







t′

x′

y′

z′


 . (15.27)

Such a transformation does not leave intervals invariant.

Let us define the four-vector xµ as

xµ =




ct
x
y
z


 ≡

(
ct
x

)
. (15.28)

Thus, x0 = ct, x1 = x, x2 = y, and x3 = z. In order for intervals to be invariant, the
transformation between xµ in frame K and x′ µ in frame K ′ must be linear:

xµ = Lµν x
′ ν , (15.29)

where we are using the Einstein convention of summing over repeated indices. We define
the Minkowski metric tensor gµν as follows:

gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (15.30)
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Clearly g = gt is a symmetric matrix.

Note that the matrix Lαβ has one raised index and one lowered index. For the notation we
are about to develop, it is very important to distinguish raised from lowered indices. To
raise or lower an index, we use the metric tensor. For example,

xµ = gµν x
ν =




ct
−x
−y
−z


 . (15.31)

The act of summing over an identical raised and lowered index is called index contraction.
Note that

gµν = gµρ gρν = δµν =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (15.32)

Now let’s investigate the invariance of the interval. We must have x′ µ x′µ = xµ xµ. Note
that

xµ xµ = Lµα x
′ α L β

µ x′β

=
(
Lµα gµν L

ν
β

)
x′ α x′ β , (15.33)

from which we conclude

Lµα gµν L
ν
β = gαβ . (15.34)

This result also may be written in other ways:

Lµα gµν L
νβ = gαβ , Lt

α
µ gµν L

ν
β = gαβ (15.35)

Another way to write this equation is Lt g L = g. A rank-4 matrix which satisfies this
constraint, with g = diag(+,−,−,−) is an element of the group O(3, 1), known as the
Lorentz group.

Let us now count the freedoms in L. As a 4 × 4 real matrix, it contains 16 elements. The
matrix Lt g L is a symmetric 4×4 matrix, which contains 10 independent elements: 4 along
the diagonal and 6 above the diagonal. Thus, there are 10 constraints on 16 elements of L,
and we conclude that the group O(3, 1) is 6-dimensional. This is also the dimension of the
four-dimensional orthogonal group O(4), by the way. Three of these six parameters may
be taken to be the Euler angles. That is, the group O(3) constitutes a three-dimensional
subgroup of the Lorentz group O(3, 1), with elements

Lµν =




1 0 0 0

0 R11 R12 R13

0 R21 R22 R23

0 R31 R32 R33


 , (15.36)
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where RtR = MI, i.e. R ∈ O(3) is a rank-3 orthogonal matrix, parameterized by the three

Euler angles (φ, θ, ψ). The remaining three parameters form a vector β = (βx, βy, βz) and
define a second class of Lorentz transformations, called boosts:2

Lµν =




γ γ βx γ βy γ βz
γ βx 1 + (γ − 1) β̂x β̂x (γ − 1) β̂x β̂y (γ − 1) β̂x β̂z
γ βy (γ − 1) β̂x β̂y 1 + (γ − 1) β̂y β̂y (γ − 1) β̂y β̂z
γ βz (γ − 1) β̂x β̂z (γ − 1) β̂y β̂z 1 + (γ − 1) β̂z β̂z


 , (15.37)

where

β̂ =
β

|β| , γ =
(
1− β2

)−1/2
. (15.38)

IMPORTANT : Since the components of β are not the spatial components of a four
vector, we will only write these components with a lowered index, as βi, with i = 1, 2, 3. We

will not write βi with a raised index, but if we did, we’d mean the same thing, i.e. βi = βi.

Note that for the spatial components of a 4-vector like xµ, we have xi = −xi.

Let’s look at a simple example, where βx = β and βy = βz = 0. Then

Lµν =




γ γ β 0 0
γ β γ 0 0
0 0 1 0
0 0 0 1


 . (15.39)

The effect of this Lorentz transformation xµ = Lµν x
′ ν is thus

ct = γct′ + γβx′ (15.40)

x = γβct′ + γx′ . (15.41)

How fast is the origin of K ′ moving in the K frame? We have dx′ = 0 and thus

1

c

dx

dt
=
γβ c dt′

γ c dt′
= β . (15.42)

Thus, u = βc, i.e. β = u/c.

It is convenient to take advantage of the fact that Pβij ≡ β̂i β̂j is a projection operator , which

satisfies
(
Pβ
)2

= Pβ. The action of Pβij on any vector ξ is to project that vector onto the β̂
direction:

Pβ ξ = (β̂ · ξ) β̂ . (15.43)

We may now write the general Lorentz boost, with β = u/c, as

L =

(
γ γβt

γβ I + (γ − 1)Pβ

)
, (15.44)

2Unlike rotations, the boosts do not themselves define a subgroup of O(3, 1).



15.3. FOUR-VECTORS AND LORENTZ TRANSFORMATIONS 299

where I is the 3× 3 unit matrix, and where we write column and row vectors

β =



βx
βy
βz


 , βt =

(
βx βy βz

)
(15.45)

as a mnemonic to help with matrix multiplications. We now have
(
ct
x

)
=

(
γ γβt

γβ I + (γ − 1)Pβ

)(
ct′

x′

)
=

(
γct′ + γβ · x′

γβct′ + x′ + (γ − 1)Pβ x′

)
. (15.46)

Thus,

ct = γct′ + γβ ·x′ (15.47)

x = γβct′ + x′ + (γ − 1) (β̂ ·x′) β̂ . (15.48)

If we resolve x and x′ into components parallel and perpendicular to β, writing

x‖ = β̂ ·x , x⊥ = x− (β̂ ·x) β̂ , (15.49)

with corresponding definitions for x′‖ and x′
⊥, the general Lorentz boost may be written as

ct = γct′ + γβx′‖ (15.50)

x‖ = γβct′ + γx′‖ (15.51)

x⊥ = x′
⊥ . (15.52)

Thus, the components of x and x′ which are parallel to β enter into a one-dimensional
Lorentz boost along with t and t′, as described by eqn. 15.41. The components of x and
x′ which are perpendicular to β are unaffected by the boost.

Finally, the Lorentz group O(3, 1) is a group under multiplication, which means that if La

and Lb are elements, then so is the product La Lb. Explicitly, we have

(La Lb)t g La Lb = Lt
b (Lt

a g La)Lb = Lt
b g Lb = g . (15.53)

15.3.1 Covariance and contravariance

Note that

Lt
α
µ gµν L

ν
β =




γ γ β 0 0
γ β γ 0 0
0 0 1 0
0 0 0 1







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







γ γ β 0 0
γ β γ 0 0
0 0 1 0
0 0 0 1




=




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 = gαβ , (15.54)
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since γ2 (1−β2) = 1. This is in fact the general way that tensors transform under a Lorentz
transformation:

covariant vectors : xµ = Lµν x
′ ν (15.55)

covariant tensors : Fµν = Lµα L
ν
β F

′ αβ = Lµα F
′ αβ Lt

β
ν (15.56)

Note how index contractions always involve one raised index and one lowered index. Raised
indices are called contravariant indices and lowered indiced are called covariant indices.
The transformation rules for contravariant vectors and tensors are

contravariant vectors : xµ = L ν
µ x′ν (15.57)

contravariant tensors : Fµν = L α
µ L β

ν F ′
αβ = L α

µ F ′
αβ L

tβ
ν (15.58)

A Lorentz scalar has no indices at all. For example,

ds2 = gµν dx
µ dxν , (15.59)

is a Lorentz scalar. In this case, we have contracted a tensor with two four-vectors. The
dot product of two four-vectors is also a Lorentz scalar:

a · b ≡ aµ bµ = gµν a
µ bν

= a0 b0 − a1 b1 − a2 b2 − a3 b3

= a0 b0 − a · b . (15.60)

Note that the dot product a · b of four-vectors is invariant under a simultaneous Lorentz
transformation of both aµ and bµ, i.e. a · b = a′ · b′. Indeed, this invariance is the very
definition of what it means for something to be a Lorentz scalar. Derivatives with respect
to covariant vectors yield contravariant vectors:

∂f

∂xµ
≡ ∂µf ,

∂Aµ

∂xν
= ∂νA

µ ≡ Bµ
ν ,

∂Bµ
ν

∂xλ
= ∂λB

µ
ν ≡ Cµνλ

et cetera. Note that differentiation with respect to the covariant vector xµ is expressed by
the contravariant differential operator ∂µ:

∂

∂xµ
≡ ∂µ =

(
1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
(15.61)

∂

∂xµ
≡ ∂µ =

(
1

c

∂

∂t
, − ∂

∂x
, − ∂

∂y
, − ∂

∂z

)
. (15.62)

The contraction ≡ ∂µ∂µ is a Lorentz scalar differential operator, called the D’Alembertian:

=
1

c2
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
. (15.63)

The Helmholtz equation for scalar waves propagating with speed c can thus be written in
compact form as φ = 0.
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15.3.2 What to do if you hate raised and lowered indices

Admittedly, this covariant and contravariant business takes some getting used to. Ulti-
mately, it helps to keep straight which indices transform according to L (covariantly) and
which transform according to Lt (contravariantly). If you find all this irksome, the raising
and lowering can be safely ignored. We define the position four-vector as before, but with no
difference between raised and lowered indices. In fact, we can just represent all vectors and
tensors with lowered indices exclusively, writing e.g. xµ = (ct, x, y, z). The metric tensor is
g = diag(+,−,−,−) as before. The dot product of two four-vectors is

x · y = gµν xµ yν . (15.64)

The Lorentz transformation is
xµ = Lµν x′ν . (15.65)

Since this preserves intervals, we must have

gµν xµ yν = gµν Lµα x′α Lνβ y′β

=
(
Lt
αµ gµν Lνβ

)
x′α y′β , (15.66)

which entails
Lt
αµ gµν Lνβ = gαβ . (15.67)

In terms of the quantity Lµν defined above, we have Lµν = Lµν . In this convention, we could

completely avoid raised indices, or we could simply make no distinction, taking xµ = xµ
and Lµν = Lµν = Lµν , etc.

15.3.3 Comparing frames

Suppose in the K frame we have a measuring rod which is at rest. What is its length as
measured in the K ′ frame? Recall K ′ moves with velocity u = u x̂ with respect to K. From
the Lorentz transformation in eqn. 15.41, we have

x1 = γ(x′1 + βc t′1) (15.68)

x2 = γ(x′2 + βc t′2) , (15.69)

where x1,2 are the positions of the ends of the rod in frame K. The rod’s length in any
frame is the instantaneous spatial separation of its ends. Thus, we set t′1 = t′2 and compute
the separation ∆x′ = x′2 − x′1:

∆x = γ∆x′ =⇒ ∆x′ = γ−1∆x =
(
1− β2

)1/2
∆x . (15.70)

The proper length ℓ0 of a rod is its instantaneous end-to-end separation in its rest frame.
We see that

ℓ(β) =
(
1− β2

)1/2
ℓ0 , (15.71)
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so the length is always greatest in the rest frame. This is an example of a Lorentz-Fitzgerald

contraction. Note that the transverse dimensions do not contract:

∆y′ = ∆y , ∆z′ = ∆z . (15.72)

Thus, the volume contraction of a bulk object is given by its length contraction: V ′ = γ−1 V.

A striking example of relativistic issues of length, time, and simultaneity is the famous
‘pole and the barn’ paradox, described in the Appendix (section ). Here we illustrate some
essential features via two examples.

15.3.4 Example I

Next, let’s analyze the situation depicted in fig. 15.3. In the K ′ frame, we’ll denote the
following spacetime points:

A′ =

(
ct′

−d

)
, B′ =

(
ct′

+d

)
, S′

− =

(
ct′

−ct′
)

, S′
− =

(
ct′

+ct′

)
. (15.73)

Note that the origin in K ′ is given by O′ = (ct′, 0). Here we are setting y = y′ = z = z′ = 0
and dealing only with one spatial dimension. The points S′

± denote the left-moving (S′
−)

and right-moving (S′
+) wavefronts. We see that the arrival of the signal S′

1 at A′ requires
S′

1 = A′, hence ct′ = d. The same result holds when we set S′
2 = B′ for the arrival of the

right-moving wavefront at B′.

We now use the Lorentz transformation

Lµν =

(
γ γ β
γ β γ

)
(15.74)

to transform to the K frame. Thus,

A =

(
ct∗A
x∗A

)
= LA′ = γ

(
1 β
β 1

)(
d
−d

)
= γ(1− β)d

(
1
−1

)
(15.75)

B =

(
ct∗B
x∗B

)
= LB′ = γ

(
1 β
β 1

)(
d

+d

)
= γ(1 + β)d

(
1
1

)
. (15.76)

Thus, t∗A = γ(1− β)d/c and t∗B = γ(1 + β)d/c. Thus, the two events are not simultaneous
in K. The arrival at A is first.

15.3.5 Example II

Consider a rod of length ℓ0 extending from the origin to the point ℓ0 x̂ at rest in frame K.
In the frame K, the two ends of the rod are located at spacetime coordinates

A =

(
ct
0

)
and B =

(
ct

ℓ0

)
, (15.77)
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Figure 15.5: A rectangular plate moving at velocity V = V x̂.

respectively. Now consider the origin in frame K ′. Its spacetime coordinates are

C ′ =

(
ct′

0

)
. (15.78)

To an observer in the K frame, we have

C =

(
γ γβ
γβ γ

)(
ct′

0

)
=

(
γct′

γβct′

)
. (15.79)

Now consider two events. The first event is the coincidence of A with C, i.e. the origin of
K ′ instantaneously coincides with the origin of K. Setting A = C we obtain t = t′ = 0.
The second event is the coincidence of B with C. Setting B = C we obtain t = l0/βc and

t′ = ℓ0/γβc. Note that t = ℓ(β)/βc, i.e. due to the Lorentz-Fitzgerald contraction of the

rod as seen in the K ′ frame, where ℓ(β) = ℓ0/γ.

15.3.6 Deformation of a rectangular plate

Problem: A rectangular plate of dimensions a × b moves at relativistic velocity V = V x̂
as shown in fig. 15.5. In the rest frame of the rectangle, the a side makes an angle θ with
respect to the x̂ axis. Describe in detail and sketch the shape of the plate as measured by
an observer in the laboratory frame. Indicate the lengths of all sides and the values of all

interior angles. Evaluate your expressions for the case θ = 1
4π and V =

√
2
3 c.

Solution: An observer in the laboratory frame will measure lengths parallel to x̂ to be
Lorentz contracted by a factor γ−1, where γ = (1− β2)−1/2 and β = V/c. Lengths perpen-
dicular to x̂ remain unaffected. Thus, we have the situation depicted in fig. 15.6. Simple
trigonometry then says

tan φ = γ tan θ , tan φ̃ = γ−1 tan θ ,
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Figure 15.6: Relativistic deformation of the rectangular plate.

as well as

a′ = a

√
γ−2 cos2θ + sin2θ = a

√
1− β2 cos2θ

b′ = b

√
γ−2 sin2θ + cos2θ = b

√
1− β2 sin2θ .

The plate deforms to a parallelogram, with internal angles

χ = 1
2π + tan−1(γ tan θ)− tan−1(γ−1 tan θ)

χ̃ = 1
2π − tan−1(γ tan θ) + tan−1(γ−1 tan θ) .

Note that the area of the plate as measured in the laboratory frame is

Ω′ = a′ b′ sinχ = a′ b′ cos(φ− φ̃)

= γ−1Ω ,

where Ω = ab is the proper area. The area contraction factor is γ−1 and not γ−2 (or γ−3

in a three-dimensional system) because only the parallel dimension gets contracted.

Setting V =
√

2
3 c gives γ =

√
3, and with θ = 1

4π we have φ = 1
3π and φ̃ = 1

6π. The interior

angles are then χ = 2
3π and χ̃ = 1

3π. The side lengths are a′ =
√

2
3 a and b′ =

√
2
3 b.
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15.3.7 Transformation of velocities

Let K ′ move at velocity u = cβ relative to K. The transformation from K ′ to K is given
by the Lorentz boost,

Lµν =




γ γ βx γ βy γ βz
γ βx 1 + (γ − 1) β̂x β̂x (γ − 1) β̂x β̂y (γ − 1) β̂x β̂z
γ βy (γ − 1) β̂x β̂y 1 + (γ − 1) β̂y β̂y (γ − 1) β̂y β̂z
γ βz (γ − 1) β̂x β̂z (γ − 1) β̂y β̂z 1 + (γ − 1) β̂z β̂z


 . (15.80)

Applying this, we have
dxµ = Lµν dx

′ ν . (15.81)

This yields

dx0 = γ dx′ 0 + γ β · dx′ (15.82)

dx = γ β dx′ 0 + dx′ + (γ − 1) β̂ β̂ ·dx′ . (15.83)

We then have

V = c
dx

dx0
=
c γ β dx′ 0 + c dx′ + c (γ − 1) β̂ β̂ ·dx′

γ dx′ 0 + γ β ·dx′

=
u+ γ−1 V ′ + (1− γ−1) û û·V ′

1 + u·V ′/c2
. (15.84)

The second line is obtained by dividing both numerator and denominator by dx′ 0, and then
writing V ′ = dx′/dx′ 0. There are two special limiting cases:

velocities parallel
(
û·V̂ ′ = 1) =⇒ V =

(u+ V ′) û
1 + uV ′/c2

(15.85)

velocities perpendicular
(
û·V̂ ′ = 0) =⇒ V = u+ γ−1V ′ . (15.86)

Note that if either u or V ′ is equal to c, the resultant expression has |V | = c as well. One
can’t boost the speed of light!

Let’s revisit briefly the example in section 15.3.4. For an observer, in the K frame, the
relative velocity of S and A is c + u, because even though we must boost the velocity
−c x̂ of the left-moving light wave by u x̂, the result is still −c x̂, according to our velocity
addition formula. The distance between the emission and detection points is d(β) = d/γ.
Thus,

t∗A =
d(β)

c+ u
=
d

γ
· 1

c+ u
=

d

γc
· 1− β
1− β2

= γ (1− β)
d

c
. (15.87)

This result is exactly as found in section 15.3.4 by other means. A corresponding analysis
yields t∗B = γ (1 + β) d/c. again in agreement with the earlier result. Here, it is crucial to
account for the Lorentz contraction of the distance between the source S and the observers
A and B as measured in the K frame.
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15.3.8 Four-velocity and four-acceleration

In nonrelativistic mechanics, the velocity V = dx
dt is locally tangent to a particle’s trajectory.

In relativistic mechanics, one defines the four-velocity ,

uα ≡ dxα

ds
=

dxα√
1− β2 c dt

=

(
γ
γβ

)
, (15.88)

which is locally tangent to the world line of a particle. Note that

gαβ u
α uβ = 1 . (15.89)

The four-acceleration is defined as

wν ≡ duν

ds
=
d2xν

ds2
. (15.90)

Note that u ·w = 0, so the 4-velocity and 4-acceleration are orthogonal with respect to the
Minkowski metric.

15.4 Three Kinds of Relativistic Rockets

15.4.1 Constant acceleration model

Consider a rocket which undergoes constant acceleration along x̂. Clearly the rocket has
no rest frame per se, because its velocity is changing. However, this poses no serious
obstacle to discussing its relativistic motion. We consider a frame K ′ in which the rocket
is instantaneously at rest. In such a frame, the rocket’s 4-acceleration is w′ α = (0, a/c2),
where we suppress the transverse coordinates y and z. In an inertial frame K, we have

wα =
d

ds

(
γ
γβ

)
=
γ

c

(
γ̇

γβ̇ + γ̇β

)
. (15.91)

Transforming w′ α into the K frame, we have

wα =

(
γ γβ
γβ γ

)(
0

a/c2

)
=

(
γβa/c2

γa/c2

)
. (15.92)

Taking the upper component, we obtain the equation

γ̇ =
βa

c
=⇒ d

dt

(
β√

1− β2

)
=
a

c
, (15.93)

the solution of which, with β(0) = 0, is

β(t) =
at√

c2 + a2t2
, γ(t) =

√

1 +

(
at

c

)2
. (15.94)
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The proper time for an observer moving with the rocket is thus

τ =

t∫

0

c dt1√
c2 + a2t21

=
c

a
sinh−1

(at
c

)
.

For large times t≫ c/a, the proper time grows logarithmically in t, which is parametrically
slower. To find the position of the rocket, we integrate ẋ = cβ, and obtain, with x(0) = 0,

x(t) =

t∫

0

a ct1 dt1√
c2 + a2t21

=
c

a

(√
c2 + a2 t2 − c

)
. (15.95)

It is interesting to consider the situation in the frame K ′. We then have

β(τ) = tanh(aτ/c) , γ(τ) = cosh(aτ/c) . (15.96)

For an observer in the frame K ′, the distance he has traveled is ∆x′(τ) = ∆x(τ)/γ(τ), as
we found in eqn. 15.70. Now x(τ) = (c2/a)

(
cosh(aτ/c) − 1

)
, hence

∆x′(τ) =
c2

a

(
1− sech(aτ/c)

)
. (15.97)

For τ ≪ c/a, we expand sech(aτ/c) ≈ 1− 1
2(aτ/c)2 and find x′(τ) = 1

2aτ
2, which clearly is

the nonrelativistic limit. For τ →∞, however, we have ∆x′(τ)→ c2/a is finite! Thus, while
the entire Universe is falling behind the accelerating observer, it all piles up at a horizon a
distance c2/a behind it, in the frame of the observer. The light from these receding objects
is increasingly red-shifted (see section 15.6 below), until it is no longer visible. Thus, as
John Baez describes it, the horizon is “a dark plane that appears to be swallowing the
entire Universe!” In the frame of the inertial observer, however, nothing strange appears to
be happening at all!

15.4.2 Constant force with decreasing mass

Suppose instead the rocket is subjected to a constant force F0 in its instantaneous rest

frame, and furthermore that the rocket’s mass satisfies m(τ) = m0(1− ατ), where τ is the
proper time for an observer moving with the rocket. Then from eqn. 15.93, we have

F0

m0(1− ατ)
=
d(γβ)

dt
= γ−1 d(γβ)

dτ

=
1

1− β2

dβ

dτ
=

d

dτ
1
2 ln

(
1 + β

1− β

)
, (15.98)

after using the chain rule, and with dτ/dt = γ−1. Integrating, we find

ln

(
1 + β

1− β

)
=

2F0

αm0c
ln
(
1− ατ

)
=⇒ β(τ) =

1− (1− ατ)r
1 + (1− ατ)r , (15.99)
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with r = 2F0/αm0c. As τ → α−1, the rocket loses all its mass, and it asymptotically
approaches the speed of light.

It is convenient to write

β(τ) = tanh

[
r

2
ln

(
1

1− ατ

)]
, (15.100)

in which case

γ =
dt

dτ
= cosh

[
r

2
ln

(
1

1− ατ

)]
(15.101)

1

c

dx

dτ
= sinh

[
r

2
ln

(
1

1− ατ

)]
. (15.102)

Integrating the first of these from τ = 0 to τ = α−1, we find t∗ ≡ t
(
τ = α−1

)
is

t∗ =
1

2α

1∫

0

dσ
(
σ−r/2 + σr/2

)
=





[
α2 −

( F0
mc

)2]−1
α if α >

F0
mc

∞ if α ≤ F0
mc .

(15.103)

Since β(τ = α−1) = 1, this is the time in the K frame when the rocket reaches the speed of
light.

15.4.3 Constant ejecta velocity

Our third relativistic rocket model is a generalization of what is commonly known as the
rocket equation in classical physics. The model is one of a rocket which is continually
ejecting burnt fuel at a velocity −u in the instantaneous rest frame of the rocket. The
nonrelativistic rocket equation follows from overall momentum conservation:

dprocket + dpfuel = d(mv) + (v − u) (−dm) = 0 , (15.104)

since if dm < 0 is the differential change in rocket mass, the differential ejecta mass is −dm.
This immediately gives

mdv + u dm = 0 =⇒ v = u ln

(
m0

m

)
, (15.105)

where the rocket is assumed to begin at rest, and where m0 is the initial mass of the rocket.
Note that as m → 0 the rocket’s speed increases without bound, which of course violates
special relativity.

In relativistic mechanics, as we shall see in section 15.5, the rocket’s momentum, as described
by an inertial observer, is p = γmv, and its energy is γmc2. We now write two equations
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for overall conservation of momentum and energy:

d(γmv) + γeve dme = 0 (15.106)

d(γmc2) + γe(dme c
2) = 0 , (15.107)

where ve is the velocity of the ejecta in the inertial frame, dme is the differential mass of

the ejecta, and γe =
(
1− v2e

c2

)−1/2
. From the second of these equations, we have

γe dme = −d(γm) , (15.108)

which we can plug into the first equation to obtain

(v − ve) d(γm) + γmdv = 0 . (15.109)

Before solving this, we remark that eqn. 15.108 implies that dme < |dm| – the differential
mass of the ejecta is less than the mass lost by the rocket! This is Einstein’s famous equation
E = mc2 at work – more on this later.

To proceed, we need to use the parallel velocity addition formula of eqn. 15.85 to find ve:

ve =
v − u
1− uv

c2
=⇒ v − ve =

u
(
1− v2

c2

)
(
1− uv

c2

) . (15.110)

We now define βu = u/c, in which case eqn, 15.109 becomes

βu (1− β2) d(γm) + (1− ββu) γmdβ = 0 . (15.111)

Using dγ = γ3β dβ, we observe a felicitous cancellation of terms, leaving

βu
dm

m
+

dβ

1− β2
= 0 . (15.112)

Integrating, we obtain

β = tanh

(
βu ln

m0

m

)
. (15.113)

Note that this agrees with the result of eqn. 15.100, if we take βu = F0/αmc.

15.5 Relativistic Mechanics

Relativistic particle dynamics follows from an appropriately extended version of Hamilton’s
principle δS = 0. The action S must be a Lorentz scalar. The action for a free particle is

S
[
x(t)

]
= −mc

b∫

a

ds = −mc2
tb∫

ta

dt

√
1− v

2

c2
. (15.114)
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Thus, the free particle Lagrangian is

L = −mc2
√

1− v
2

c2
= −mc2 + 1

2mv
2 + 1

8mc
2

(
v2

c2

)2
+ . . . . (15.115)

Thus, L can be written as an expansion in powers of v2/c2. Note that L(v = 0) = −mc2.
We interpret this as −U0, where U0 = mc2 is the rest energy of the particle. As a constant,
it has no consequence for the equations of motion. The next term in L is the familiar
nonrelativistic kinetic energy, 1

2mv
2. Higher order terms are smaller by increasing factors

of β2 = v2/c2.

We can add a potential U(x, t) to obtain

L(x, ẋ, t) = −mc2
√

1− ẋ
2

c2
− U(x, t) . (15.116)

The momentum of the particle is

p =
∂L

∂ẋ
= γmẋ . (15.117)

The force is F = −∇U as usual, and Newton’s Second Law still reads ṗ = F . Note that

ṗ = γm

(
v̇ +

vv̇

c2
γ2v

)
. (15.118)

Thus, the force F is not necessarily in the direction of the acceleration a = v̇. The
Hamiltonian, recall, is a function of coordinates and momenta, and is given by

H = p · ẋ− L =
√
m2c4 + p2c2 + U(x, t) . (15.119)

Since ∂L/∂t = 0 for our case, H is conserved by the motion of the particle. There are two
limits of note:

|p| ≪ mc (non-relativistic) : H = mc2 +
p2

2m
+ U +O(p4/m4c4) (15.120)

|p| ≫ mc (ultra-relativistic) : H = c|p|+ U +O(mc/p) . (15.121)

Expressed in terms of the coordinates and velocities, we have H = E, the total energy, with

E = γmc2 + U . (15.122)

In particle physics applications, one often defines the kinetic energy T as

T = E − U −mc2 = (γ − 1)mc2 . (15.123)

When electromagnetic fields are included,

L(x, ẋ, t) = −mc2
√

1− ẋ
2

c2
− q φ+

q

c
A · ẋ

= −γmc2 − q

c
Aµ

dxµ

dt
, (15.124)
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where the electromagnetic 4-potential is Aµ = (φ , A). Recall Aµ = gµν Aν has the sign of
its spatial components reversed. One the has

p =
∂L

∂ẋ
= γmẋ+

q

c
A , (15.125)

and the Hamiltonian is

H =

√
m2c4 +

(
p− q

c
A
)2

+ q φ . (15.126)

15.5.1 Relativistic harmonic oscillator

From E = γmc2 + U , we have

ẋ2 = c2

[
1−

(
mc2

E − U(x)

)2 ]
. (15.127)

Consider the one-dimensional harmonic oscillator potential U(x) = 1
2kx

2. We define the
turning points as x = ±b, satisfying

E −mc2 = U(±b) = 1
2kb

2 . (15.128)

Now define the angle θ via x ≡ b cos θ, and further define the dimensionless parameter
ǫ = kb2/4mc2. Then, after some manipulations, one obtains

θ̇ = ω0

√
1 + ǫ sin2θ

1 + 2ǫ sin2θ
, (15.129)

with ω0 =
√
k/m as in the nonrelativistic case. Hence, the problem is reduced to quadra-

tures (a quaint way of saying ‘doing an an integral’):

t(θ)− t0 = ω−1
0

θ∫

θ0

dϑ
1 + 2ǫ sin2ϑ√

1 + ǫ sin2ϑ
. (15.130)

While the result can be expressed in terms of elliptic integrals, such an expression is not
particularly illuminating. Here we will content ourselves with computing the period T (ǫ):

T (ǫ) =
4

ω0

π
2∫

0

dϑ
1 + 2ǫ sin2ϑ√

1 + ǫ sin2ϑ
(15.131)

=
4

ω0

π
2∫

0

dϑ
(
1 + 3

2ǫ sin
2ϑ− 5

8ǫ
2 sin4ϑ+ . . .

)

=
2π

ω0
·
{

1 + 3
4ǫ− 15

64ǫ
2 + . . .

}
. (15.132)

Thus, for the relativistic harmonic oscillator, the period does depend on the amplitude,
unlike the nonrelativistic case.
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15.5.2 Energy-momentum 4-vector

Let’s focus on the case where U(x) = 0. This is in fact a realistic assumption for subatomic
particles, which propagate freely between collision events.

The differential proper time for a particle is given by

dτ =
ds

c
= γ−1 dt , (15.133)

where xµ = (ct,x) are coordinates for the particle in an inertial frame. Thus,

p = γmẋ = m
dx

dτ
,

E

c
= mcγ = m

dx0

dτ
, (15.134)

with x0 = ct. Thus, we can write the energy-momentum 4-vector as

pµ = m
dxµ

dτ
=




E/c
px

py

pz


 . (15.135)

Note that pν = mcuν , where uν is the 4-velocity of eqn. 15.88. The four-momentum satisfies
the relation

pµ pµ =
E2

c2
− p2 = m2c2 . (15.136)

The relativistic generalization of force is

fµ =
dpµ

dτ
=
(
γF ·v/c , γF

)
, (15.137)

where F = dp/dt as usual.

The energy-momentum four-vector transforms covariantly under a Lorentz transformation.
This means

pµ = Lµν p
′ ν . (15.138)

If frame K ′ moves with velocity u = cβ x̂ relative to frame K, then

E

c
=
c−1E′ + β p′x√

1− β2
, px =

p′x + βc−1E′
√

1− β2
, py = p′y , pz = p′z . (15.139)

In general, from eqns. 15.50, 15.51, and 15.52, we have

E

c
= γ

E′

c
+ γβp′‖ (15.140)

p‖ = γβ
E

c
+ γp′‖ (15.141)

p⊥ = p′⊥ (15.142)

where p‖ = β̂ ·p and p⊥ = p− (β̂ ·p) β̂.
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15.5.3 4-momentum for massless particles

For a massless particle, such as a photon, we have pµ pµ = 0, which means E2 = p2 c2. The
4-momentum may then be written pµ =

(
|p| , p

)
. We define the 4-wavevector kµ by the

relation pµ = ~kµ, where ~ = h/2π and h is Planck’s constant. We also write ω = ck, with
E = ~ω.

15.6 Relativistic Doppler Effect

The 4-wavevector kµ =
(
ω/c , k

)
for electromagnetic radiation satisfies kµ kµ = 0. The

energy-momentum 4-vector is pµ = ~kµ. The phase φ(xµ) = −kµ xµ = k ·x− ωt of a plane
wave is a Lorentz scalar. This means that the total number of wave crests (i.e. φ = 2πn)
emitted by a source will be the total number observed by a detector.

Suppose a moving source emits radiation of angular frequency ω′ in its rest frame. Then

k′ µ = Lµν(−β) kν

=




γ −γ βx −γ βy −γ βz
−γ βx 1 + (γ − 1) β̂x β̂x (γ − 1) β̂x β̂y (γ − 1) β̂x β̂z
−γ βy (γ − 1) β̂x β̂y 1 + (γ − 1) β̂y β̂y (γ − 1) β̂y β̂z
−γ βz (γ − 1) β̂x β̂z (γ − 1) β̂y β̂z 1 + (γ − 1) β̂z β̂z







ω/c
kx

ky

kz


 .

(15.143)

This gives
ω′

c
= γ

ω

c
− γ β · k = γ

ω

c
(1− β cos θ) , (15.144)

where θ = cos−1(β̂ · k̂) is the angle measured in K between β̂ and k̂. Solving for ω, we have

ω =

√
1− β2

1− β cos θ
ω0 , (15.145)

where ω0 = ω′ is the angular frequency in the rest frame of the moving source. Thus,

θ = 0 ⇒ source approaching ⇒ ω =

√
1 + β

1− β ω0 (15.146)

θ = 1
2π ⇒ source perpendicular ⇒ ω =

√
1− β2 ω0 (15.147)

θ = π ⇒ source receding ⇒ ω =

√
1− β
1 + β

ω0 . (15.148)

Recall the non-relativistic Doppler effect:

ω =
ω0

1− (V/c) cos θ
. (15.149)
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Figure 15.7: Alice’s big adventure.

We see that approaching sources have their frequencies shifted higher; this is called the
blue shift , since blue light is on the high frequency (short wavelength) end of the optical
spectrum. By the same token, receding sources are red-shifted to lower frequencies.

15.6.1 Romantic example

Alice and Bob have a “May-December” thang going on. Bob is May and Alice December,
if you get my drift. The social stigma is too much to bear! To rectify this, they decide
that Alice should take a ride in a space ship. Alice’s itinerary takes her along a sector of
a circle of radius R and angular span of Θ = 1 radian, as depicted in fig. 15.7. Define
O ≡ (r = 0), P ≡ (r = R,φ = −1

2Θ), and Q ≡ (r = R,φ = 1
2Θ). Alice’s speed along the

first leg (straight from O to P) is va = 3
5 c. Her speed along the second leg (an arc from

P to Q) is vb = 12
13 c. The final leg (straight from Q to O) she travels at speed vc = 4

5 c.
Remember that the length of an circular arc of radius R and angular spread α (radians) is
ℓ = αR.

(a) Alice and Bob synchronize watches at the moment of Alice’s departure. What is the
elapsed time on Bob’s watch when Alice returns? What is the elapsed time on Alice’s
watch? What must R be in order for them to erase their initial 30 year age difference?

Solution : In Bob’s frame, Alice’s trip takes a time

∆t =
R

cβa
+
RΘ

cβb
+

R

cβc

=
R

c

(
5
3 + 13

12 + 5
4

)
=

4R

c
. (15.150)

The elapsed time on Alice’s watch is

∆t′ =
R

cγaβa
+

RΘ

cγbβb
+

R

cγcβc

=
R

c

(
5
3 · 4

5 + 13
12 · 5

13 + 5
4 · 3

5

)
=

5R

2c
. (15.151)
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Thus, ∆T = ∆t − ∆t′ = 3R/2c and setting ∆T = 30yr, we find R = 20 ly. So Bob will
have aged 80 years and Alice 50 years upon her return. (Maybe this isn’t such a good plan
after all.)

(b) As a signal of her undying love for Bob, Alice continually shines a beacon throughout
her trip. The beacon produces monochromatic light at wavelength λ0 = 6000 Å (frequency

f0 = c/λ0 = 5 × 1014 Hz). Every night, Bob peers into the sky (with a radiotelescope),
hopefully looking for Alice’s signal. What frequencies fa, fb, and fc does Bob see?

Solution : Using the relativistic Doppler formula, we have

fa =

√
1− βa

1 + βa
× f0 = 1

2f0

fb =
√

1− β2
b × f0 = 5

13f0

fc =

√
1 + βc

1− βc
× f0 = 3f0 . (15.152)

(c) Show that the total number of wave crests counted by Bob is the same as the number
emitted by Alice, over the entire trip.

Solution : Consider first the O–P leg of Alice’s trip. The proper time elapsed on Alice’s
watch during this leg is ∆t′a = R/cγaβa, hence she emits N ′

a = Rf0/cγaβa wavefronts during

this leg. Similar considerations hold for the P–Q and Q–O legs, so N ′
b = RΘf0/cγbβb and

N ′
c = Rf0/cγcβc.

Although the duration of the O–P segment of Alice’s trip takes a time ∆ta = R/cβa in Bob’s

frame, he keeps receiving the signal at the Doppler-shifted frequency fa until the wavefront
emitted when Alice arrives at P makes its way back to Bob. That takes an extra time R/c,
hence the number of crests emitted for Alice’s O–P leg is

Na =

(
R

cβa
+
R

c

)√
1− βa

1 + βa
× f0 =

Rf0

cγaβa
= N ′

a , (15.153)

since the source is receding from the observer.

During the P–Q leg, we have θ = 1
2π, and Alice’s velocity is orthogonal to the wavevector k,

which is directed radially inward. Bob’s first signal at frequency fb arrives a time R/c after
Alice passes P, and his last signal at this frequency arrives a time R/c after Alice passes Q.
Thus, the total time during which Bob receives the signal at the Doppler-shifted frequency
fb is ∆tb = RΘ/c, and

Nb =
RΘ

cβb
·
√

1− β2
b × f0 =

RΘf0

cγbβb
= N ′

b . (15.154)



316 CHAPTER 15. SPECIAL RELATIVITY

Finally, during the Q–O home stretch, Bob first starts to receive the signal at the Doppler-
shifted frequency fc a time R/c after Alice passes Q, and he continues to receive the signal
until the moment Alice rushes into his open and very flabby old arms when she makes it
back to O. Thus, Bob receives the frequency fc signal for a duration ∆tc − R/c, where

∆tc = R/cβc. Thus,

Nc =

(
R

cβc
− R

c

)√
1 + βc

1− βc
× f0 =

Rf0

cγcβc
= N ′

c , (15.155)

since the source is approaching.

Therefore, the number of wavelengths emitted by Alice will be precisely equal to the number
received by Bob – none of the waves gets lost.

15.7 Relativistic Kinematics of Particle Collisions

As should be expected, special relativity is essential toward the understanding of subatomic
particle collisions, where the particles themselves are moving at close to the speed of light. In
our analysis of the kinematics of collisions, we shall find it convenient to adopt the standard
convention on units, where we set c ≡ 1. Energies will typically be given in GeV, where
1GeV = 109 eV = 1.602 × 10−10RJ. Momenta will then be in units of GeV/c, and masses
in units of GeV/c2. With c ≡ 1, it is then customary to quote masses in energy units. For

example, the mass of the proton in these units is mp = 938MeV, and m
π− = 140MeV.

For a particle of massM , its 4-momentum satisfies Pµ Pµ = M2 (remember c = 1). Consider
now an observer with 4-velocity Uµ. The energy of the particle, in the rest frame of the
observer is E = Pµ Uµ. For example, if Pµ = (M, 0, 0, 0) is its rest frame, and Uµ = (γ , γβ),
then E = γM , as we have already seen.

Consider next the emission of a photon of 4-momentum Pµ = (~ω/c, ~k) from an object
with 4-velocity V µ, and detected in a frame with 4-velocity Uµ. In the frame of the detector,
the photon energy is E = PµUµ, while in the frame of the emitter its energy is E′ = Pµ Vµ.
If Uµ = (1, 0, 0, 0) and V µ = (γ , γβ), then E = ~ω and E′ = ~ω′ = γ~(ω − β · k) =
γ~ω(1−β cos θ), where θ = cos−1

(
β̂ · k̂

)
. Thus, ω = γ−1ω′/(1−β cos θ). This recapitulates

our earlier derivation in eqn. 15.144.

Consider next the interaction of several particles. If in a given frame the 4-momenta of the
reactants are Pµi , where n labels the reactant ‘species’, and the 4-momenta of the products
are Qµj , then if the collision is elastic, we have that total 4-momentum is conserved, i.e.

N∑

i=1

Pµi =

N̄∑

j=1

Qµj , (15.156)

where there are N reactants and N̄ products. For massive particles, we can write

Pµi = γimi

(
1 , vi) , Qµj = γ̄j m̄j

(
1 , v̄j) , (15.157)
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Figure 15.8: Spontaneous decay of a single reactant into two products.

while for massless particles,

Pµi = ~ki
(
1 , k̂

)
, Qµj = ~k̄j

(
1 , ˆ̄k

)
. (15.158)

15.7.1 Spontaneous particle decay into two products

Consider first the decay of a particle of mass M into two particles. We have Pµ = Qµ1 +Qµ2 ,
hence in the rest frame of the (sole) reactant, which is also called the ‘center of mass’

(CM) frame since the total 3-momentum vanishes therein, we have M = E1 + E2. Since

ECM
i = γCMmi, and γi ≥ 1, clearly we must have M > m1 +m2, or else the decay cannot

possibly conserve energy. To analyze further, write Pµ −Qµ1 = Qµ2 . Squaring, we obtain

M2 +m2
1 − 2PµQ

µ
1 = m2

2 . (15.159)

The dot-product P ·Q1 is a Lorentz scalar, and hence may be evaluated in any frame.

Let us first consider the CM frame, where Pµ = M(1, 0, 0, 0), and PµQ
µ
1 = MECM

1 , where
ECM

1 is the energy of n = 1 product in the rest frame of the reactant. Thus,

ECM
1 =

M2 +m2
1 −m2

2

2M
, ECM

2 =
M2 +m2

2 −m2
1

2M
, (15.160)

where the second result follows merely from switching the product labels. We may now
write Qµ1 = (ECM

1 ,pCM) and Qµ2 = (ECM
2 ,−pCM), with

(pCM)2 = (ECM
1 )2 −m2

1 = (ECM
2 )2 −m2

2

=

(
M2 −m2

1 −m2
2

2M

)2
−
(
m1m2

M

)2
. (15.161)

In the laboratory frame, we have Pµ = γM (1 , V ) and Qµi = γimi (1 , Vi). Energy and

momentum conservation then provide four equations for the six unknowns V1 and V2. Thus,
there is a two-parameter family of solutions, assuming we regard the reactant velocity V K as
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fixed, corresponding to the freedom to choose p̂CM in the CM frame solution above. Clearly
the three vectors V , V1, and V2 must lie in the same plane, and with V fixed, only one
additional parameter is required to fix this plane. The other free parameter may be taken
to be the relative angle θ1 = cos−1

(
V̂ · V̂1

)
(see fig. 15.8). The angle θ2 as well as the speed

V2 are then completely determined. We can use eqn. 15.159 to relate θ1 and V1:

M2 +m2
1 −m2

2 = 2Mm1γγ1

(
1− V V1 cos θ1

)
. (15.162)

It is convenient to express both γ1 and V1 in terms of the energy E1:

γ1 =
E1

m1

, V1 =

√
1− γ−2

1 =

√
1− m2

1

E2
1

. (15.163)

This results in a quadratic equation for E1, which may be expressed as

(1− V 2 cos2θ1)E
2
1 − 2

√
1− V 2 ECM

1 E1 + (1− V 2)(ECM
1 )2 +m2

1 V
2 cos2θ1 = 0 , (15.164)

the solutions of which are

E1 =

√
1− V 2 ECM

1 ± V cos θ1

√
(1− V 2)(ECM

1 )2 − (1− V 2 cos2θ1)m
2
1

1− V 2 cos2θ1
. (15.165)

The discriminant is positive provided

(
ECM

1

m1

)2
>

1− V 2 cos2θ1
1− V 2

, (15.166)

which means

sin2θ1 <
V −2 − 1

(V CM
1 )−2 − 1

≡ sin2θ∗1 , (15.167)

where

V CM
1 =

√

1−
(
m1

ECM
1

)2
(15.168)

is the speed of product 1 in the CM frame. Thus, for V < V CM
1 < 1, the scattering angle θ1

may take on any value, while for larger reactant speeds V CM
1 < V < 1 the quantity sin2θ1

cannot exceed a critical value.

15.7.2 Miscellaneous examples of particle decays

Let us now consider some applications of the formulae in eqn. 15.160:

• Consider the decay π0 → γγ, for which m1 = m2 = 0. We then have ECM
1 = ECM

2 =
1
2M . Thus, with M = m

π0 = 135MeV, we have ECM
1 = ECM

2 = 67.5MeV for the
photon energies in the CM frame.
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• For the reaction K+ −→ µ+ + νµ we have M = m
K+ = 494MeV and m1 = m

µ−
=

106MeV. The neutrino mass is m2 ≈ 0, hence ECM
2 = 236MeV is the emitted neu-

trino’s energy in the CM frame.

• A Λ0 hyperon with a mass M = m
Λ0 = 1116MeV decays into a proton (m1 = mp =

938MeV) and a pion m2 = m
π− = 140MeV). The CM energy of the emitted proton

is ECM
1 = 943MeV and that of the emitted pion is ECM

2 = 173MeV.

15.7.3 Threshold particle production with a stationary target

Consider now a particle of mass M1 moving with velocity V1 = V1 x̂, incident upon a

stationary target particle of mass M2, as indicated in fig. 15.9. Let the product masses be

m1, m2, . . . , mN ′ . The 4-momenta of the reactants and products are

Pµ1 =
(
E1 , P1

)
, Pµ2 = M2

(
1 , 0

)
, Qµj =

(
εj , pj

)
. (15.169)

Note that E2
1 − P 2

1 = M2
1 and ε2j − p2

j = m2
j , with j ∈ {1, 2, . . . , N ′}.

Conservation of momentum means that

Pµ1 + Pµ2 =

N ′∑

j=1

Qµj . (15.170)

In particular, taking the µ = 0 component, we have

E1 +M2 =
N ′∑

j=1

εj , (15.171)

which certainly entails

E1 ≥
N ′∑

j=1

mj −M2 (15.172)

since εj = γjmj ≥ mj. But can the equality ever be achieved? This would only be the case

if γj = 1 for all j, i.e. the final velocities are all zero. But this itself is quite impossible,
since the initial state momentum is P .

To determine the threshold energy Ethr
1 , we compare the length of the total momentum

vector in the LAB and CM frames:

(P1 + P2)
2 = M2

1 +M2
2 + 2E1M2 (LAB) (15.173)

=

(
N ′∑

j=1

εCM
j

)2

(CM) . (15.174)
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Figure 15.9: A two-particle initial state, with a stationary target in the LAB frame, and an
N ′-particle final state.

Thus,

E1 =

(∑N ′

j=1 ε
CM
j

)2
−M2

1 −M2
2

2M2
(15.175)

and we conclude

E1 ≥ ETHR
1 =

(∑N ′

j=1mj

)2
−M2

1 −M2
2

2M2
. (15.176)

Note that in the CM frame it is possible for each εCM
j = mj.

Finally, we must have ETHR
1 ≥∑N ′

j=1mj −M2. This then requires

M1 +M2 ≤
N ′∑

j=1

mj . (15.177)

15.7.4 Transformation between frames

Consider a particle with 4-velocity uµ in frame K and consider a Lorentz transformation
between this frame and a frame K ′ moving relative to K with velocity V . We may write

uµ =
(
γ , γv cos θ , γv sin θ n̂⊥

)
, u′µ =

(
γ′ , γ′v′ cos θ′ , γ′v′ sin θ′ n̂′

⊥
)
. (15.178)

According to the general transformation rules of eqns. 15.50, 15.51, and 15.52, we may
write

γ = Γ γ′ + ΓV γ′v′ cos θ′ (15.179)

γv cos θ = ΓV γ′ + Γ γ′v′ cos θ′ (15.180)

γv sin θ = γ′v′ sin θ′ (15.181)

n̂⊥ = n̂′
⊥ , (15.182)

where the x̂ axis is taken to be V̂ , and where Γ ≡ (1− V 2)−1/2. Note that the last two of
these equations may be written as a single vector equation for the transverse components.
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Dividing the eqn. 15.181 by eqn. 15.180, we obtain the result

tan θ =
sin θ′

Γ
(
V
v′ + cos θ′

) . (15.183)

We can then use eqn. 15.179 to relate v′ and cos θ′:

γ′−1
=
√

1− v′2 =
Γ

γ

(
1 + V v′ cos θ′

)
. (15.184)

Squaring both sides, we obtain a quadratic equation whose roots are

v′ =
−Γ 2 V cos θ′ ±

√
γ4 − Γ 2 γ2 (1− V 2 cos2θ′)

γ2 + Γ 2 V 2 cos2θ′
. (15.185)

CM frame mass and velocity

To find the velocity of the CM frame, simply write

Pµtot =
N∑

i=1

Pµi =

(
N∑

i=1

γimi ,
N∑

i=1

γimi vi

)
(15.186)

≡ Γ M (1 , V ) . (15.187)

Then

M2 =

(
N∑

i=1

γimi

)2

−
(

N∑

i=1

γimi vi

)2

(15.188)

and

V =

∑N
i=1 γimi vi∑N
i=1 γimi

. (15.189)

15.7.5 Compton scattering

An extremely important example of relativistic scattering occurs when a photon scatters
off an electron: e− + γ −→ e− + γ (see fig. 15.10). Let us work in the rest frame of the
reactant electron. Then we have

Pµe = me (1, 0) , P̃µe = me (γ , γV ) (15.190)

for the initial and final 4-momenta of the electron. For the photon, we have

Pµγ = (ω , k) , P̃µγ = (ω̃ , k̃) , (15.191)

where we’ve set ~ = 1 as well. Conservation of 4-momentum entails

Pµγ − P̃µγ = P̃µe − Pµe . (15.192)
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Figure 15.10: Compton scattering of a photon and an electron.

Thus, (
ω − ω̃ , k − k̃

)
= me

(
γ − 1 , γV

)
. (15.193)

Squaring each side, we obtain
(
ω − ω̃

)2 −
(
k − k̃

)2
= 2ω ω̃ (cos θ − 1)

= m2
e

(
(γ − 1)2 − γ2V 2

)

= 2m2
e(1− γ)

= 2me

(
ω̃ − ω) . (15.194)

Here we have used |k| = ω for photons, and also (γ − 1)me = ω − ω̃, from eqn. 15.193.

Restoring the units ~ and c, we find the Compton formula

1

ω̃
− 1

ω
=

~

mec2
(
1− cos θ

)
. (15.195)

This is often expressed in terms of the photon wavelengths, as

λ̃− λ =
4π~

mec
sin2

(
1
2θ
)
, (15.196)

showing that the wavelength of the scattered light increases with the scattering angle in the
rest frame of the target electron.

15.8 Covariant Electrodynamics

We begin with the following expression for the Lagrangian density of charged particles
coupled to an electromagnetic field, and then show that the Euler-Lagrange equations re-
capitulate Maxwell’s equations. The Lagrangian density is

L = − 1

16π
Fµν F

µν − 1

c
jµA

µ . (15.197)
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Here, Aµ = (φ ,A) is the electromagnetic 4-potential , which combines the scalar field φ

and the vector field A into a single 4-vector. The quantity Fµν is the electromagnetic field

strength tensor and is given by

Fµν = ∂µAν − ∂νAµ . (15.198)

Note that as defined Fµν = −Fνµ is antisymmetric. Note that, if i = 1, 2, 3 is a spatial
index, then

F0i = −1

c

∂Ai

∂t
− ∂A0

∂xi
= Ei (15.199)

Fij =
∂Ai

∂xj
− ∂Aj

∂xi
= − ǫijkBk . (15.200)

Here we have used Aµ = (A0 , A) and Aµ = (A0 , −A), as well as ∂µ = (c−1∂t ,∇).

IMPORTANT : Since the electric and magnetic fields E and B are not part of a 4-vector,
we do not use covariant / contravariant notation for their components. Thus, Ei is the ith

component of the vector E. We will not write Ei with a raised index, but if we did, we’d
mean the same thing: Ei = Ei. By contrast, for the spatial components of a four-vector

like Aµ, we have Ai = −Ai.

Explicitly, then, we have

Fµν =




0 Ex Ey Ez
−Ex 0 −Bz By
−Ey Bz 0 −Bx
−Ez −By Bx 0


 , Fµν =




0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0


 ,

(15.201)

where Fµν = gµα gνβ Fαβ . Note that when comparing Fµν and Fµν , the components with
one space and one time index differ by a minus sign. Thus,

− 1

16π
Fµν F

µν =
E2 −B2

8π
, (15.202)

which is the electromagnetic Lagrangian density. The j ·A term accounts for the interaction
between matter and electromagnetic degrees of freedom. We have

1

c
jµA

µ = ̺φ− 1

c
j ·A , (15.203)

where

jµ =

(
c̺
j

)
, Aµ =

(
φ
A

)
, (15.204)

where ̺ is the charge density and j is the current density. Charge conservation requires

∂µ j
µ =

∂̺

∂t
+ ∇·j = 0 . (15.205)
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We shall have more to say about this further on below.

Let us now derive the Euler-Lagrange equations for the action functional,

S = −c−1

∫
d4x

(
1

16π
Fµν F

µν + c−1 jµA
µ

)
. (15.206)

We first vary with respect to Aµ. Clearly

δFµν = ∂µ δAν − ∂ν δAµ . (15.207)

We then have

δL =

(
1

4π
∂µF

µν − c−1jν
)
δAν − ∂µ

(
1

4π
Fµν δAν

)
. (15.208)

Ignoring the boundary term, we obtain Maxwell’s equations,

∂µ F
µν = 4πc−1 jν (15.209)

The ν = k component of these equations yields

∂0 F
0k + ∂i F

jk = −∂0Ek − ǫjkl ∂j Bl = 4πc−1 jk , (15.210)

which is the k component of the Maxwell-Ampère law,

∇×B =
4π

c
j +

1

c

∂E

∂t
. (15.211)

The ν = 0 component reads

∂i F
i0 =

4π

c
j0 ⇒ ∇·E = 4π̺ , (15.212)

which is Gauss’s law. The remaining two Maxwell equations come ‘for free’ from the very
definitions of E and B:

E = −∇A0 − 1

c

∂A

∂t
(15.213)

B = ∇×A , (15.214)

which imply

∇×E = −1

c

∂B

∂t
(15.215)

∇ ·B = 0 . (15.216)

15.8.1 Lorentz force law

This has already been worked out in chapter 7. Here we reiterate our earlier derivation.
The 4-current may be written as

jµ(x, t) = c
∑

n

qn

∫
dτ

dXµ
n

dτ
δ(4)(x−X) . (15.217)
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Thus, writing Xµ
n =

(
ct ,Xn(t)

)
, we have

j0(x, t) =
∑

n

qn c δ
(
x−Xn(t)

)
(15.218)

j(x, t) =
∑

n

qn Ẋn(t) δ
(
x−Xn(t)

)
. (15.219)

The Lagrangian for the matter-field interaction term is then

L = −c−1

∫
d3x
(
j0A0 − j ·A

)

= −
∑

n

[
qn φ(Xn, t)−

qn
c
A(Xn, t) · Ẋn

]
, (15.220)

where φ = A0. For each charge qn, this is equivalent to a particle with velocity-dependent
potential energy

U(x, t) = q φ(x, t) − q

c
A(r, t) · ẋ , (15.221)

where x = Xn.

Let’s work out the equations of motion. We assume a kinetic energy T = 1
2mẋ

2 for the
charge. We then have

d

dt

(
∂L

∂ẋ

)
=
∂L

∂x
(15.222)

with L = T − U , which gives

m ẍ+
q

c

dA

dt
= −q∇φ+

q

c
∇(A · ẋ) , (15.223)

or, in component notation,

mẍi +
q

c

∂Ai

∂xj
ẋj +

q

c

∂Ai

∂t
= −q ∂φ

∂xi
+
q

c

∂Aj

∂xi
ẋj , (15.224)

which is to say

mẍi = −q ∂φ
∂xi
− q

c

∂Ai

∂t
+
q

c

(
∂Aj

∂xi
− ∂Ai

∂xj

)
ẋj . (15.225)

It is convenient to express the cross product in terms of the completely antisymmetric tensor
of rank three, ǫijk:

Bi = ǫijk
∂Ak

∂xj
, (15.226)

and using the result
ǫijk ǫimn = δjm δkn − δjn δkm , (15.227)

we have ǫijk Bi = ∂jAk − ∂kAj, and

mẍi = −q ∂φ
∂xi
− q

c

∂Ai

∂t
+
q

c
ǫijk ẋ

j Bk , (15.228)
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Figure 15.11: Homer celebrates the manifest gauge invariance of classical electromagnetic
theory.

or, in vector notation,

m ẍ = −q∇φ− q

c

∂A

∂t
+
q

c
ẋ× (∇×A)

= qE +
q

c
ẋ×B , (15.229)

which is, of course, the Lorentz force law.

15.8.2 Gauge invariance

The action S = c−1
∫
d4xL admits a gauge invariance. Let Aµ → Aµ + ∂µΛ, where Λ(x, t)

is an arbitrary scalar function of spacetime coordinates. Clearly

Fµν → Fµν +
(
∂µ∂νΛ− ∂ν∂µΛ

)
= Fµν , (15.230)

and hence the fieldsE andB remain invariant under the gauge transformation, even though
the 4-potential itself changes. What about the matter term? Clearly

−c−1 jµAµ → − c−1 jµ Aµ − c−1 jµ ∂µΛ

= −c−1 jµAµ + c−1Λ ∂µ j
µ − ∂µ

(
c−1Λ jµ

)
. (15.231)

Once again we ignore the boundary term. We may now invoke charge conservation to write
∂µ jµ = 0, and we conclude that the action is invariant! Woo hoo! Note also the very deep
connection

gauge invariance ←→ charge conservation . (15.232)
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15.8.3 Transformations of fields

One last detail remains, and that is to exhibit explicitly the Lorentz transformation prop-
erties of the electromagnetic field. For the case of vectors like Aµ, we have

Aµ = Lµν A
′ ν . (15.233)

The E and B fields, however, appear as elements in the field strength tensor Fµν . Clearly
this must transform as a tensor:

Fµν = Lµα L
ν
β F

′ αβ = Lµα F
′ αβ Lt

β
ν . (15.234)

We can write a general Lorentz transformation as a product of a rotation Lrot and a boost

Lboost. Let’s first see how rotations act on the field strength tensor. We take

L = Lrot =

(
11×1 01×3

03×1 R3×3

)
, (15.235)

where RtR = I, i.e. R ∈ O(3) is an orthogonal matrix. We must compute

Lµα F
′ αβ Lt

β
ν =

(
1 0

0 Rij

)(
0 −E′

k

E′
j − ǫjkmB′

m

)(
1 0
0 Rt

kl

)

=

(
0 −E′

kR
t
kl

Rij E
′
j − ǫjkmRij Rlk B′

m

)
. (15.236)

Thus, we conclude

El = Rlk E
′
k (15.237)

ǫilnBn = ǫjkmRij Rlk B
′
m . (15.238)

Now for any 3× 3 matrix R we have

ǫjksRij Rlk Rrs = det(R) ǫilr , (15.239)

and therefore

ǫjkmRij Rlk B
′
m = ǫjkmRij Rlk RnmRnsB

′
s

= det(R) ǫilnRnsB
′
s , (15.240)

Therefore,
Ei = Rij E

′
j , Bi = det(R) · Rij B′

j . (15.241)

For any orthogonal matrix, RtR = I gives that det(R) = ±1. The extra factor of det(R)
in the transformation properties of B is due to the fact that the electric field transforms as
a vector , while the magnetic field transforms as a pseudovector . Under space inversion, for
example, where R = −I, the electric field is odd under this transformation (E → −E) while
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the magnetic field is even (B → +B). Similar considerations hold in particle mechanics for
the linear momentum, p (a vector) and the angular momentum L = r×p (a pseudovector).
The analogy is not complete, however, because while both p and L are odd under the
operation of time-reversal, E is even while B is odd.

OK, so how about boosts? We can write the general boost, from eqn. 15.37, as

L =

(
γ γβ̂

γβ̂ I + (γ − 1)Pβ

)
(15.242)

where Pβij = β̂i β̂j is the projector onto the direction of β. We now compute

Lµα F
′ αβ Lt

β
ν =

(
γ γβt

γβ I + (γ − 1)P

)(
0 −E′ t

E′ − ǫjkmB′
m

)(
γ γβt

γβ I + (γ − 1)P

)
. (15.243)

Carrying out the matrix multiplications, we obtain

E = γ(E′ − β ×B′)− (γ − 1)(β̂ ·E′)β̂ (15.244)

B = γ(B′ + β ×E′)− (γ − 1)(β̂ ·B′)β̂ . (15.245)

Expressed in terms of the components E‖, E⊥, B‖, and B⊥, one has

E‖ = E′
‖ , E⊥ = γ

(
E′

⊥ − β ×B′
⊥
)

(15.246)

B‖ = B′
‖ , B⊥ = γ

(
B′

⊥ + β ×E′
⊥
)
. (15.247)

Recall that for any vector ξ, we write

ξ‖ = β̂ · ξ (15.248)

ξ⊥ = ξ − (β̂ · ξ) β̂ , (15.249)

so that β̂ · ξ⊥ = 0.

15.8.4 Invariance versus covariance

We saw that the laws of electromagnetism were gauge invariant . That is, the solutions to
the field equations did not change under a gauge transformation Aµ → Aµ + ∂µΛ. With
respect to Lorentz transformations, however, the theory is Lorentz covariant . This means
that Maxwell’s equations in different inertial frames take the exact same form, ∂µFµν =
4πc−1jν , but that both the fields and the sources transform appropriately under a change
in reference frames. The sources are described by the current 4-vector jµ = (c̺ , j) and
transform as

c̺ = γc̺′ + γβj′‖ (15.250)

j‖ = γβc̺′ + γj′‖ (15.251)

j⊥ = j ′⊥ . (15.252)
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The fields transform according to eqns. 15.246 and 15.247.

Consider, for example, a static point charge q located at the origin in the frame K ′, which
moves with velocity u x̂ with respect to K. An observer in K ′ measures a charge density
̺′(x′, t′) = q δ(x′). The electric and magnetic fields in the K ′ frame are then E′ = q r̂′/r′ 2

and B′ = 0. For an observer in the K frame, the coordinates transform as

ct = γct′ + γβx′ ct′ = γct− γβx (15.253)

x = γβct′ + γx′ x′ = −γβct+ γx , (15.254)

as well as y = y′ and z = z′. The observer in the K frame sees instead a charge at
xµ = (ct , ut , 0 , 0) and both a charge density as well as a current density:

̺(x, t) = γ̺(x′, t′) = q δ(x− ut) δ(y) δ(z) (15.255)

j(x, t) = γβc ̺(x′, t′) x̂ = u q δ(x− ut) δ(y) δ(z) x̂ . (15.256)

OK, so much for the sources. How about the fields? Expressed in terms of Cartesian
coordinates, the electric field in K ′ is given by

E′(x′, t′) = q
x′x̂+ y′ŷ + z′ẑ

(
x′ 2 + y′ 2 + z′ 2

)3/2 . (15.257)

From eqns. 15.246 and 15.247, we have Ex = E′
x and Bx = B′

x = 0. Furthermore, we have
Ey = γE′

y, Ez = γE′
z, By = −γβE′

z, and Bz = γβE′
y. Thus,

E(x, t) = γq
(x− ut)x̂+ yŷ + zẑ

[
γ2(x− ut)2 + y2 + z2

]3/2 (15.258)

B(x, t) =
γu

c
q

yẑ − zŷ
[
γ2(x− ut)2 + y2 + z2

]3/2 . (15.259)

Let us define

R(t) = (x− ut) x̂+ y ŷ + z ẑ . (15.260)

We further define the angle θ ≡ cos−1
(
β̂ · R̂

)
. We may then write

E(x, t) =
qR

R3
· 1− β2

(
1− β2 sin2θ

)3/2

B(x, t) =
q β̂ ×R
R3

· 1− β2

(
1− β2 sin2θ

)3/2 . (15.261)

The fields are therefore enhanced in the transverse directions: E⊥/E‖ = γ3.
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Figure 15.12: A relativistic runner carries a pole of proper length ℓ and runs into a barn of
proper length ℓ.

15.9 Appendix I : The Pole, the Barn, and Rashoman

Akira Kurosawa’s 1950 cinematic masterpiece, Rashoman, describes a rape, murder, and
battle from four different and often contradictory points of view. It poses deep questions
regarding the nature of truth. Psychologists sometimes refer to problems of subjective
perception as the Rashoman effect . In literature, William Faulkner’s 1929 novel, The Sound

and the Fury , which describes the tormented incestuous life of a Mississippi family, also is
told from four points of view. Perhaps Faulkner would be a more apt comparison with
Einstein, since time plays an essential role in his novel. For example, Quentin’s watch,
given to him by his father, represents time and the sweep of life’s arc (“Quentin, I give you

the mausoleum of all hope and desire...”). By breaking the watch, Quentin symbolically
attempts to escape time and fate. One could draw an analogy to Einstein, inheriting a watch
from those who came before him, which he too broke – and refashioned. Did Faulkner know
of Einstein? But I digress.

Consider a relativistic runner carrying a pole of proper length ℓ, as depicted in fig. 15.12.
He runs toward a barn of proper length ℓ at velocity u = cβ. Let the frame of the barn
be K and the frame of the runner be K ′. Recall that the Lorentz transformations between
frames K and K ′ are given by

ct = γct′ + γx′ ct′ = γct− γβx (15.262)

x = γβct′ + γx′ x′ = −γβct+ γx . (15.263)

We define the following points. Let A denote the left door of the barn and B the right
door. Furthermore, let P denote the left end of the pole and Q its right end. The spacetime
coordinates for these points in the two frames are clearly .

A = (ct , 0) P ′ = (ct′ , 0) (15.264)

B = (ct , ℓ) Q′ = (ct′ , ℓ) (15.265)

We now compute A′ and B′ in frame K ′, as well as P and Q in frame K:

A′ = (γct , −γβct) B′ = (γct− γβℓ , −γβct+ γℓ) (15.266)

≡ (ct′ , −βct′) ≡ (ct′ , −βct′ + γ−1ℓ) . (15.267)
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Similarly,

P = (γct′ , γβct′) Q = (γct′ + γβℓ , γβct′ + γℓ) (15.268)

≡ (ct , βct) ≡ (ct , βct+ γ−1ℓ) . (15.269)

We now define four events, by the coincidences of A and B with P and Q:

• Event I : The right end of the pole enters the left door of the barn. This is described
by Q = A in frame K and by Q′ = A′ in frame K ′.

• Event II : The right end of the pole exits the right door of the barn. This is described
by Q = B in frame K and by Q′ = B′ in frame K ′.

• Event III : The left end of the pole enters the left door of the barn. This is described
by P = A in frame K and by P ′ = A′ in frame K ′.

• Event IV : The left end of the pole exits the right door of the barn. This is described
by P = B in frame K and by P ′ = B′ in frame K ′.

Mathematically, we have in frame K that

I : Q = A ⇒ tI = − ℓ

γu
(15.270)

II : Q = B ⇒ tII = (γ − 1)
ℓ

γu
(15.271)

III : P = A ⇒ tIII = 0 (15.272)

IV : P = B ⇒ tIV =
ℓ

u
(15.273)

In frame K ′, however

I : Q′ = A′ ⇒ t′I = − ℓ
u

(15.274)

II : Q′ = B′ ⇒ t′II = −(γ − 1)
ℓ

γu
(15.275)

III : P ′ = A′ ⇒ t′III = 0 (15.276)

IV : P ′ = B′ ⇒ t′IV =
ℓ

γu
(15.277)

Thus, to an observer in frame K, the order of events is I, III, II, and IV, because

tI < tIII < tII < tIV . (15.278)

For tIII < t < tII, he observes that the pole is entirely in the barn. Indeed, the right door can
start shut and the left door open, and sensors can automatically and, for the purposes of
argument, instantaneously trigger the closing of the left door immediately following event
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Figure 15.13: An object of proper length ℓ and moving with velocity u, when photographed
from an angle α, appears to have a length ℓ̃.

III and the opening of the right door immediately prior to event II. So the pole can be
inside the barn with both doors shut!

But now for the Rashoman effect : according to the runner, the order of events is I, II, III,
and IV, because

t′I < t′II < t′III < t′IV . (15.279)

At no time does the runner observe the pole to be entirely within the barn. Indeed, for
t′II < t′ < t′III, both ends of the pole are sticking outside of the barn!

15.10 Appendix II : Photographing a Moving Pole

What is the length ℓ of a moving pole of proper length ℓ0 as measured by an observer at

rest? The answer would appear to be γ−1ℓ0, as we computed in eqn. 15.71. However, we

should be more precise when we we speak of ‘length’. The relation ℓ(β) = γ−1ℓ0 tells us
the instantaneous end-to-end distance as measured in the observer’s rest frame K. But an
actual experiment might not measure this quantity.

For example, suppose a relativistic runner carrying a pole of proper length ℓ0 runs past a
measuring rod which is at rest in the rest frame K of an observer. The observer takes a

photograph of the moving pole as it passes by. Suppose further that the angle between the
observer’s line of sight and the velocity u of the pole is α, as shown in fig. 15.13. What is
the apparent length ℓ(α, u) of the pole as observed in the photograph? (I.e. the pole will
appear to cover a portion of the measuring rod which is of length ℓ.)
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The point here is that the shutter of the camera is very fast (otherwise the image will appear
blurry). In our analysis we will assume the shutter opens and closes instantaneously. Let’s
define two events:

• Event 1 : photon γ1 is emitted by the rear end of the pole.

• Event 2 : photon γ2 is emitted by the front end of the pole.

Both photons must arrive at the camera’s lens simultaneously. Since, as shown in the figure,
the path of photon #1 is longer by a distance ℓ cosα, where ℓ is the apparent length of the
pole, γ2 must be emitted a time ∆t = c−1ℓ cosα after γ1. Now if we Lorentz transform from
frame K to frame K ′, we have

∆x′ = γ∆x− γβ∆t . (15.280)

But ∆x′ = ℓ0 is the proper length of the pole, and ∆x = ℓ is the apparent length. With
c∆t = ℓ cosα, then, we have

ℓ =
γ−1 ℓ0

1− β cosα
. (15.281)

When α = 90◦, we recover the familiar Lorentz-Fitzgerald contraction ℓ(β) = γ−1 ℓ0. This

is because the photons γ1 and γ2 are then emitted simultaneously, and the photograph
measures the instantaneous end-to-end distance of the pole as measured in the observer’s
rest frame K. When cosα 6= 0, however, the two photons are not emitted simultaneously,
and the apparent length is given by eqn. 15.281.
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Chapter 16

Hamiltonian Mechanics

16.1 The Hamiltonian

Recall that L = L(q, q̇, t), and

pσ =
∂L

∂q̇σ
. (16.1)

The Hamiltonian, H(q, p) is obtained by a Legendre transformation,

H(q, p) =
n∑

σ=1

pσ q̇σ − L . (16.2)

Note that

dH =

n∑

σ=1

(
pσ dq̇σ + q̇σ dpσ −

∂L

∂qσ
dqσ −

∂L

∂q̇σ
dq̇σ

)
− ∂L

∂t
dt

=
n∑

σ=1

(
q̇σ dpσ −

∂L

∂qσ
dqσ

)
− ∂L

∂t
dt . (16.3)

Thus, we obtain Hamilton’s equations of motion,

∂H

∂pσ
= q̇σ ,

∂H

∂qσ
= − ∂L

∂qσ
= −ṗσ (16.4)

and
dH

dt
=
∂H

∂t
= −∂L

∂t
. (16.5)

Some remarks:

• As an example, consider a particle moving in three dimensions, described by spherical
polar coordinates (r, θ, φ). Then

L = 1
2m
(
ṙ2 + r2 θ̇2 + r2 sin2θ φ̇2

)
− U(r, θ, φ) . (16.6)

335
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We have

pr =
∂L

∂ṙ
= mṙ , pθ =

∂L

∂θ̇
= mr2 θ̇ , pφ =

∂L

∂φ̇
= mr2 sin2θ φ̇ , (16.7)

and thus

H = pr ṙ + pθ θ̇ + pφ φ̇− L

=
p2
r

2m
+

p2
θ

2mr2
+

p2
φ

2mr2 sin2θ
+ U(r, θ, φ) . (16.8)

Note that H is time-independent, hence ∂H
∂t = dH

dt = 0, and therefore H is a constant
of the motion.

• In order to obtain H(q, p) we must invert the relation pσ = ∂L
∂q̇σ

= pσ(q, q̇) to obtain

q̇σ(q, p). This is possible if the Hessian,

∂pα
∂q̇β

=
∂2L

∂q̇α ∂q̇β
(16.9)

is nonsingular. This is the content of the ‘inverse function theorem’ of multivariable
calculus.

• Define the rank 2n vector, ξ, by its components,

ξi =

{
qi if 1 ≤ i ≤ n
pi−n if n < i ≤ 2n .

(16.10)

Then we may write Hamilton’s equations compactly as

ξ̇i = Jij
∂H

∂ξj
, (16.11)

where

J =

(
On×n In×n
−In×n On×n

)
(16.12)

is a rank 2n matrix. Note that J t = −J , i.e. J is antisymmetric, and that J2 =
−I2n×2n. We shall utilize this ‘symplectic structure’ to Hamilton’s equations shortly.
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16.2 Modified Hamilton’s Principle

We have that

0 = δ

tb∫

ta

dtL = δ

tb∫

ta

dt
(
pσ q̇σ −H

)
(16.13)

=

tb∫

ta

dt

{
pσ δq̇σ + q̇σ δpσ −

∂H

∂qσ
δqσ −

∂H

∂pσ
δpσ

}

=

tb∫

ta

dt

{
−
(
ṗσ +

∂H

∂qσ

)
δqσ +

(
q̇σ −

∂H

∂pσ

)
δpσ

}
+
(
pσ δqσ

)∣∣∣
tb

ta
,

assuming δqσ(ta) = δqσ(tb) = 0. Setting the coefficients of δqσ and δpσ to zero, we recover
Hamilton’s equations.

16.3 Phase Flow is Incompressible

A flow for which ∇ · v = 0 is incompressible – we shall see why in a moment. Let’s check
that the divergence of the phase space velocity does indeed vanish:

∇ · ξ̇ =
n∑

σ=1

{
∂q̇σ
∂qσ

+
∂ṗσ
∂pσ

}

=
2n∑

i=1

∂ξ̇i
∂ξi

=
∑

i,j

Jij
∂2H

∂ξi ∂ξj
= 0 . (16.14)

Now let ρ(ξ, t) be a distribution on phase space. Continuity implies

∂ρ

∂t
+ ∇ · (ρ ξ̇) = 0 . (16.15)

Invoking ∇ · ξ̇ = 0, we have that

Dρ

Dt
=
∂ρ

∂t
+ ξ̇ ·∇ρ = 0 , (16.16)

where Dρ/Dt is sometimes called the convective derivative – it is the total derivative of the
function ρ

(
ξ(t), t

)
, evaluated at a point ξ(t) in phase space which moves according to the

dynamics. This says that the density in the “comoving frame” is locally constant.
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16.4 Poincaré Recurrence Theorem

Let gτ be the ‘τ -advance mapping’ which evolves points in phase space according to Hamil-
ton’s equations

q̇i = +
∂H

∂pi
, ṗi = − ∂H

∂qi
(16.17)

for a time interval ∆t = τ . Consider a region Ω in phase space. Define gnτΩ to be the
nth image of Ω under the mapping gτ . Clearly gτ is invertible; the inverse is obtained by
integrating the equations of motion backward in time. We denote the inverse of gτ by g−1

τ .
By Liouville’s theorem, gτ is volume preserving when acting on regions in phase space, since
the evolution of any given point is Hamiltonian. This follows from the continuity equation
for the phase space density,

∂̺

∂t
+∇ · (u̺) = 0 (16.18)

where u = {q̇, ṗ} is the velocity vector in phase space, and Hamilton’s equations, which
say that the phase flow is incompressible, i.e. ∇ · u = 0:

∇ · u =

n∑

i=1

{
∂q̇i
∂qi

+
∂ṗi
∂pi

}

=

n∑

i=1

{
∂

∂qi

(
∂H

∂pi

)
+

∂

∂pi

(
− ∂H

∂qi

)}
= 0 . (16.19)

Thus, we have that the convective derivative vanishes, viz.

D̺

Dt
≡ ∂̺

∂t
+ u · ∇̺ = 0 , (16.20)

which guarantees that the density remains constant in a frame moving with the flow.

The proof of the recurrence theorem is simple. Assume that gτ is invertible and volume-
preserving, as is the case for Hamiltonian flow. Further assume that phase space volume
is finite. Since the energy is preserved in the case of time-independent Hamiltonians, we
simply ask that the volume of phase space at fixed total energy E be finite, i.e.

∫
dµ δ

(
E −H(q,p)

)
<∞ , (16.21)

where dµ = dq dp is the phase space uniform integration measure.

Theorem: In any finite neighborhood Ω of phase space there exists a point ϕ0 which will
return to Ω after n applications of gτ , where n is finite.

Proof: Assume the theorem fails; we will show this assumption results in a contradiction.
Consider the set Υ formed from the union of all sets gmτ Ω for all m:

Υ =

∞⋃

m=0

gmτ Ω (16.22)
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We assume that the set {gmτ Ω |m ∈ Z ,m ≥ 0} is disjoint. The volume of a union of disjoint
sets is the sum of the individual volumes. Thus,

vol(Υ) =
∞∑

m=0

vol(gmτ Ω)

= vol(Ω) ·
∞∑

m=1

1 =∞ , (16.23)

since vol(gmτ Ω) = vol(Ω) from volume preservation. But clearly Υ is a subset of the entire
phase space, hence we have a contradiction, because by assumption phase space is of finite
volume.

Thus, the assumption that the set {gmτ Ω |m ∈ Z ,m ≥ 0} is disjoint fails. This means that
there exists some pair of integers k and l, with k 6= l, such that gkτ Ω ∩ glτ Ω 6= ∅. Without
loss of generality we may assume k > l. Apply the inverse g−1

τ to this relation l times to get
gk−lτ Ω∩Ω 6= ∅. Now choose any point ϕ ∈ gnτ Ω∩Ω, where n = k− l, and define ϕ0 = g−nτ ϕ.

Then by construction both ϕ0 and gnτ ϕ0 lie within Ω and the theorem is proven.

Each of the two central assumptions – invertibility and volume preservation – is crucial.
Without either of them, the proof fails. Consider, for example, a volume-preserving map
which is not invertible. An example might be a mapping f : R → R which takes any real
number to its fractional part. Thus, f(π) = 0.14159265 . . .. Let us restrict our attention
to intervals of width less than unity. Clearly f is then volume preserving. The action of f
on the interval [2, 3) is to map it to the interval [0, 1). But [0, 1) remains fixed under the
action of f , so no point within the interval [2, 3) will ever return under repeated iterations
of f . Thus, f does not exhibit Poincaré recurrence.

Consider next the case of the damped harmonic oscillator. In this case, phase space volumes
contract. For a one-dimensional oscillator obeying ẍ+2βẋ+Ω2

0x = 0 one has ∇·u = −2β <
0 (β > 0 for damping). Thus the convective derivative obeysDt̺ = −(∇·u)̺ = +2β̺ which
says that the density increases exponentially in the comoving frame, as ̺(t) = e2βt ̺(0).
Thus, phase space volumes collapse, and are not preserved by the dynamics. In this case, it
is possible for the set Υ to be of finite volume, even if it is the union of an infinite number of
sets gnτ Ω, because the volumes of these component sets themselves decrease exponentially,
as vol(gnτ Ω) = e−2nβτ vol(Ω). A damped pendulum, released from rest at some small angle

θ0, will not return arbitrarily close to these initial conditions.

16.5 Poisson Brackets

The time evolution of any function F (q, p) over phase space is given by

d

dt
F
(
q(t), p(t), t

)
=
∂F

∂t
+

n∑

σ=1

{
∂F

∂qσ
q̇σ +

∂F

∂pσ
ṗσ

}

≡ ∂F

∂t
+
{
F,H

}
, (16.24)
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where the Poisson bracket {· , ·} is given by

{
A,B

}
≡

n∑

σ=1

(
∂A

∂qσ

∂B

∂pσ
− ∂A

∂pσ

∂B

∂qσ

)
(16.25)

=
2n∑

i,j=1

Jij
∂A

∂ξi

∂B

∂ξj
. (16.26)

Properties of the Poisson bracket:

• Antisymmetry: {
f, g
}

= −
{
g, f
}
. (16.27)

• Bilinearity: if λ is a constant, and f , g, and h are functions on phase space, then

{
f + λ g, h

}
=
{
f, h
}

+ λ{g, h
}
. (16.28)

Linearity in the second argument follows from this and the antisymmetry condition.

• Associativity: {
fg, h

}
= f

{
g, h
}

+ g
{
f, h
}
. (16.29)

• Jacobi identity: {
f, {g, h}

}
+
{
g, {h, f}

}
+
{
h, {f, g}

}
= 0 . (16.30)

Some other useful properties:

◦ If {A,H} = 0 and ∂A
∂t = 0, then dA

dt = 0, i.e. A(q, p) is a constant of the motion.

◦ If {A,H} = 0 and {B,H} = 0, then
{
{A,B},H

}
= 0. If in addition A and B have

no explicit time dependence, we conclude that {A,B} is a constant of the motion.

◦ It is easily established that

{qα, qβ} = 0 , {pα, pβ} = 0 , {qα, pβ} = δαβ . (16.31)

16.6 Canonical Transformations

16.6.1 Point transformations in Lagrangian mechanics

In Lagrangian mechanics, we are free to redefine our generalized coordinates, viz.

Qσ = Qσ(q1, . . . , qn, t) . (16.32)
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This is called a “point transformation.” The transformation is invertible if

det

(
∂Qα
∂qβ

)
6= 0 . (16.33)

The transformed Lagrangian, L̃, written as a function of the new coordinates Q and veloc-
ities Q̇, is

L̃
(
Q, Q̇, t) = L

(
q(Q, t), q̇(Q, Q̇, t)

)
. (16.34)

Finally, Hamilton’s principle,

δ

tb∫

t1

dt L̃(Q, Q̇, t) = 0 (16.35)

with δQσ(ta) = δQσ(tb) = 0, still holds, and the form of the Euler-Lagrange equations
remains unchanged:

∂L̃

∂Qσ
− d

dt

(
∂L̃

∂Q̇σ

)
= 0 . (16.36)

The invariance of the equations of motion under a point transformation may be verified
explicitly. We first evaluate

d

dt

(
∂L̃

∂Q̇σ

)
=

d

dt

(
∂L

∂q̇α

∂q̇α

∂Q̇σ

)
=

d

dt

(
∂L

∂q̇α

∂qα
∂Qσ

)
, (16.37)

where the relation
∂q̇α

∂Q̇σ
=

∂qα
∂Qσ

(16.38)

follows from

q̇α =
∂qα
∂Qσ

Q̇σ +
∂qα
∂t

. (16.39)

Now we compute

∂L̃

∂Qσ
=

∂L

∂qα

∂qα
∂Qσ

+
∂L

∂q̇α

∂q̇α
∂Qσ

=
∂L

∂qα

∂qα
∂Qσ

+
∂L

∂q̇α

(
∂2qα

∂Qσ ∂Qσ′
Q̇σ′ +

∂2qα
∂Qσ ∂t

)

=
d

dt

(
∂L

∂q̇σ

)
∂qα
∂Qσ

+
∂L

∂q̇α

d

dt

(
∂qα
∂Qσ

)

=
d

dt

(
∂L

∂q̇σ

∂qα
∂Qσ

)
=

d

dt

(
∂L̃

∂Q̇σ

)
, (16.40)

where the last equality is what we obtained earlier in eqn. 16.37.
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16.6.2 Canonical transformations in Hamiltonian mechanics

In Hamiltonian mechanics, we will deal with a much broader class of transformations – ones
which mix all the q′s and p′s. The general form for a canonical transformation (CT) is

qσ = qσ
(
Q1, . . . , Qn;P1, . . . , Pn; t

)
(16.41)

pσ = pσ
(
Q1, . . . , Qn;P1, . . . , Pn; t

)
, (16.42)

with σ ∈ {1, . . . , n}. We may also write

ξi = ξi
(
Ξ1, . . . , Ξ2n; t

)
, (16.43)

with i ∈ {1, . . . , 2n}. The transformed Hamiltonian is H̃(Q,P, t).

What sorts of transformations are allowed? Well, if Hamilton’s equations are to remain
invariant, then

Q̇σ =
∂H̃

∂Pσ
, Ṗσ = − ∂H̃

∂Qσ
, (16.44)

which gives
∂Q̇σ
∂Qσ

+
∂Ṗσ
∂Pσ

= 0 =
∂Ξ̇i
∂Ξi

. (16.45)

I.e. the flow remains incompressible in the new (Q,P ) variables. We will also require that
phase space volumes are preserved by the transformation, i.e.

det

(
∂Ξi
∂ξj

)
=

∣∣∣∣
∣∣∣∣
∂(Q,P )

∂(q, p)

∣∣∣∣
∣∣∣∣ = 1 . (16.46)

Additional conditions will be discussed below.

16.6.3 Hamiltonian evolution

Hamiltonian evolution itself defines a canonical transformation. Let ξi = ξi(t) and ξ′i =

ξi(t+ dt). Then from the dynamics ξ̇i = Jij
∂H
∂ξj

, we have

ξi(t+ dt) = ξi(t) + Jij
∂H

∂ξj
dt+O

(
dt2
)
. (16.47)

Thus,

∂ξ′i
∂ξj

=
∂

∂ξj

(
ξi + Jik

∂H

∂ξk
dt+O

(
dt2
))

= δij + Jik
∂2H

∂ξj ∂ξk
dt+O

(
dt2
)
. (16.48)

Now, using the result
det
(
1 + ǫM

)
= 1 + ǫTrM +O(ǫ2) , (16.49)
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we have

∣∣∣∣
∣∣∣∣
∂ξ′i
∂ξj

∣∣∣∣
∣∣∣∣ = 1 + Jjk

∂2H

∂ξj ∂ξk
dt+O

(
dt2
)

(16.50)

= 1 +O
(
dt2
)
. (16.51)

16.6.4 Symplectic structure

We have that

ξ̇i = Jij
∂H

∂ξj
. (16.52)

Suppose we make a time-independent canonical transformation to new phase space coordi-
nates, Ξa = Ξa(ξ). We then have

Ξ̇a =
∂Ξa
∂ξj

ξ̇j =
∂Ξa
∂ξj

Jjk
∂H

∂ξk
. (16.53)

But if the transformation is canonical, then the equations of motion are preserved, and we
also have

Ξ̇a = Jab
∂H̃

∂Ξb
= Jab

∂ξk
∂Ξb

∂H

∂ξk
. (16.54)

Equating these two expressions, we have

Maj Jjk
∂H

∂ξk
= JabM

−1
kb

∂H

∂ξk
, (16.55)

where

Maj ≡
∂Ξa
∂ξj

(16.56)

is the Jacobian of the transformation. Since the equality must hold for all ξ, we conclude

MJ = J
(
M t
)−1

=⇒ MJM t = J . (16.57)

A matrix M satisfying MM t = I is of course an orthogonal matrix. A matrix M satisfying
MJM t = J is called symplectic. We write M ∈ Sp(2n), i.e. M is an element of the group
of symplectic matrices1 of rank 2n.

The symplectic property of M guarantees that the Poisson brackets are preserved under a

1Note that the rank of a symplectic matrix is always even. Note also MJM t = J implies M tJM = J .
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canonical transformation:

{
A,B

}
ξ

= Jij
∂A

∂ξi

∂B

∂ξj

= Jij
∂A

∂Ξa

∂Ξa
∂ξi

∂B

∂Ξb

∂Ξb
∂ξj

=
(
Mai JijM

t
jb

) ∂A
∂Ξa

∂B

∂Ξb

= Jab
∂A

∂Ξa

∂B

∂Ξb

=
{
A,B

}
Ξ
. (16.58)

16.6.5 Generating functions for canonical transformations

For a transformation to be canonical, we require

δ

tb∫

ta

dt
{
pσ q̇σ −H(q, p, t)

}
= 0 = δ

tb∫

ta

dt
{
Pσ Q̇σ − H̃(Q,P, t)

}
. (16.59)

This is satisfied provided

{
pσ q̇σ −H(q, p, t)

}
= λ

{
Pσ Q̇σ − H̃(Q,P, t) +

dF

dt

}
, (16.60)

where λ is a constant. For canonical transformations, λ = 1.2 Thus,

H̃(Q,P, t) = H(q, p, t) + Pσ Q̇σ − pσ q̇σ +
∂F

∂qσ
q̇σ +

∂F

∂Qσ
Q̇σ

+
∂F

∂pσ
ṗσ +

∂F

∂Pσ
Ṗσ +

∂F

∂t
. (16.61)

Thus, we require

∂F

∂qσ
= pσ ,

∂F

∂Qσ
= −Pσ ,

∂F

∂pσ
= 0 ,

∂F

∂Pσ
= 0 . (16.62)

The transformed Hamiltonian is

H̃(Q,P, t) = H(q, p, t) +
∂F

∂t
. (16.63)

2Solutions of eqn. 16.60 with λ 6= 1 are known as extended canonical transformations. We can always
rescale coordinates and/or momenta to achieve λ = 1.
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There are four possibilities, corresponding to the freedom to make Legendre transformations
with respect to each of the arguments of F (q,Q) :

F (q,Q, t) =





F1(q,Q, t) ; pσ = +∂F1
∂qσ

, Pσ = − ∂F1
∂Qσ

(type I)

F2(q, P, t)− Pσ Qσ ; pσ = +∂F2
∂qσ

, Qσ = + ∂F2
∂Pσ

(type II)

F3(p,Q, t) + pσ qσ ; qσ = −∂F3
∂pσ

, Pσ = − ∂F3
∂Qσ

(type III)

F4(p, P, t) + pσ qσ − Pσ Qσ ; qσ = −∂F4
∂pσ

, Qσ = + ∂F4
∂Pσ

(type IV)

In each case (γ = 1, 2, 3, 4), we have

H̃(Q,P, t) = H(q, p, t) +
∂Fγ
∂t

. (16.64)

Let’s work out some examples:

• Consider the type-II transformation generated by

F2(q, P ) = Aσ(q)Pσ , (16.65)

where Aσ(q) is an arbitrary function of the {qσ}. We then have

Qσ =
∂F2

∂Pσ
= Aσ(q) , pσ =

∂F2

∂qσ
=
∂Aα
∂qσ

Pα . (16.66)

Thus,

Qσ = Aσ(q) , Pσ =
∂qα
∂Qσ

pα . (16.67)

This is a general point transformation of the kind discussed in eqn. 16.32. For a general
linear point transformation, Qα = Mαβ qβ, we have Pα = pβM

−1
βα , i.e. Q = Mq,

P = pM−1. If Mαβ = δαβ , this is the identity transformation. F2 = q1P3 + q3P1

interchanges labels 1 and 3, etc.

• Consider the type-I transformation generated by

F1(q,Q) = Aσ(q)Qσ . (16.68)

We then have

pσ =
∂F1

∂qσ
=
∂Aα
∂qσ

Qα (16.69)

Pσ = − ∂F1

∂Qσ
= −Aσ(q) . (16.70)

Note that Aσ(q) = qσ generates the transformation
(
q
p

)
−→

(
−P
+Q

)
. (16.71)
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• A mixed transformation is also permitted. For example,

F (q,Q) = q1Q1 + (q3 −Q2)P2 + (q2 −Q3)P3 (16.72)

is of type-I with respect to index σ = 1 and type-II with respect to indices σ = 2, 3.
The transformation effected is

Q1 = p1 Q2 = q3 Q3 = q2 (16.73)

P1 = −q1 P2 = p3 P3 = p2 . (16.74)

• Consider the harmonic oscillator,

H(q, p) =
p2

2m
+ 1

2kq
2 . (16.75)

If we could find a time-independent canonical transformation such that

p =
√

2mf(P ) cosQ , q =

√
2 f(P )

k
sinQ , (16.76)

where f(P ) is some function of P , then we’d have H̃(Q,P ) = f(P ), which is cyclic in
Q. To find this transformation, we take the ratio of p and q to obtain

p =
√
mk q ctnQ , (16.77)

which suggests the type-I transformation

F1(q,Q) = 1
2

√
mk q2 ctnQ . (16.78)

This leads to

p =
∂F1

∂q
=
√
mk q ctnQ , P = −∂F1

∂Q
=

√
mk q2

2 sin2Q
. (16.79)

Thus,

q =

√
2P

4
√
mk

sinQ =⇒ f(P ) =

√
k

m
P = ωP , (16.80)

where ω =
√
k/m is the oscillation frequency. We therefore have

H̃(Q,P ) = ωP , (16.81)

whence P = E/ω. The equations of motion are

Ṗ = −∂H̃
∂Q

= 0 , Q̇ =
∂H̃

∂P
= ω , (16.82)

which yields

Q(t) = ωt+ ϕ0 , q(t) =

√
2E

mω2
sin
(
ωt+ ϕ0

)
. (16.83)
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16.7 Hamilton-Jacobi Theory

We’ve stressed the great freedom involved in making canonical transformations. Coordi-
nates and momenta, for example, may be interchanged – the distinction between them is
purely a matter of convention! We now ask: is there any specially preferred canonical trans-
formation? In this regard, one obvious goal is to make the Hamiltonian H̃(Q,P, t) and the
corresponding equations of motion as simple as possible.

Recall the general form of the canonical transformation:

H̃(Q,P ) = H(q, p) +
∂F

∂t
, (16.84)

with

∂F

∂qσ
= pσ

∂F

∂pσ
= 0 (16.85)

∂F

∂Qσ
= −Pσ

∂F

∂Pσ
= 0 . (16.86)

We now demand that this transformation result in the simplest Hamiltonian possible, that
is, H̃(Q,P, t) = 0. This requires we find a function F such that

∂F

∂t
= −H ,

∂F

∂qσ
= pσ . (16.87)

The remaining functional dependence may be taken to be either on Q (type I) or on P
(type II). As it turns out, the generating function F we seek is in fact the action, S, which
is the integral of L with respect to time, expressed as a function of its endpoint values.

16.7.1 The action as a function of coordinates and time

We have seen how the action S[η(τ)] is a functional of the path η(τ) and a function of the

endpoint values {qa, ta} and {qb, tb}. Let us define the action function S(q, t) as

S(q, t) =

t∫

ta

dτ L
(
η, η̇, τ) , (16.88)

where η(τ) starts at (qa, ta) and ends at (q, t). We also require that η(τ) satisfy the Euler-
Lagrange equations,

∂L

∂ησ
− d

dτ

(
∂L

∂η̇σ

)
= 0 (16.89)

Let us now consider a new path, η̃(τ), also starting at (qa, ta), but ending at (q+dq, t+dt),
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and also satisfying the equations of motion. The differential of S is

dS = S
[
η̃(τ)

]
− S

[
η(τ)

]

=

t+dt∫

ta

dτ L(η̃, ˙̃η, τ)−
t∫

ta

dτ L
(
η, η̇, τ) (16.90)

=

t∫

ta

dτ

{
∂L

∂ησ

[
η̃σ(τ)− ησ(τ)

]
+
∂L

∂η̇σ

[
˙̃ησ(τ)− η̇σ(τ)

]}
+ L

(
η̃(t), ˙̃η(t), t

)
dt

=

t∫

ta

dτ

{
∂L

∂ησ
− d

dτ

(
∂L

∂η̇σ

)}[
η̃σ(τ)− ησ(τ)

]

+
∂L

∂η̇σ

∣∣∣∣
t

[
η̃σ(t)− ησ(t)

]
+ L

(
η̃(t), ˙̃η(t), t

)
dt

= 0 + πσ(t) δησ(t) + L
(
η(t), η̇(t), t

)
dt+O(δq · dt) , (16.91)

where we have defined

πσ =
∂L

∂η̇σ
, (16.92)

and
δησ(τ) ≡ η̃σ(τ)− ησ(τ) . (16.93)

Note that the differential dqσ is given by

dqσ = η̃σ(t+ dt)− ησ(t) (16.94)

= η̃σ(t+ dt)− η̃σ(t) + η̃σ(t)− ησ(t)
= ˙̃ησ(t) dt + δησ(t)

= q̇σ(t) dt + δησ(t) +O(δq · dt) . (16.95)

Thus, with πσ(t) ≡ pσ, we have

dS = pσ dqσ +
(
L− pσ q̇σ

)
dt

= pσ dqσ −H dt . (16.96)

We therefore obtain
∂S

∂qσ
= pσ ,

∂S

∂t
= −H ,

dS

dt
= L . (16.97)

What about the lower limit at ta? Clearly there are n + 1 constants associated with this
limit:

{
q1(ta), . . . , qn(ta); ta

}
. Thus, we may write

S = S(q1, . . . , qn;Λ1, . . . , Λn, t) + Λn+1 , (16.98)
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Figure 16.1: A one-parameter family of paths q(s; ǫ).

where our n+ 1 constants are {Λ1, . . . , Λn+1}. If we regard S as a mixed generator, which

is type-I in some variables and type-II in others, then each Λσ for 1 ≤ σ ≤ n may be chosen
to be either Qσ or Pσ. We will define

Γσ =
∂S

∂Λσ
=

{
+Qσ if Λσ = Pσ

−Pσ if Λσ = Qσ
(16.99)

For each σ, the two possibilities Λσ = Qσ or Λσ = Pσ are of course rendered equivalent by
a canonical transformation (Qσ , Pσ)→ (Pσ ,−Qσ).

16.7.2 The Hamilton-Jacobi equation

Since the action S(q, Λ, t) has been shown to generate a canonical transformation for which
H̃(Q,P ) = 0. This requirement may be written as

H
(
q1, . . . , qn,

∂S

∂q1
, . . . ,

∂S

∂qn
, t
)

+
∂S

∂t
= 0 . (16.100)

This is the Hamilton-Jacobi equation (HJE). It is a first order partial differential equation
in n+ 1 variables, and in general is nonlinear (since kinetic energy is generally a quadratic
function of momenta). Since H̃(Q,P, t) = 0, the equations of motion are trivial, and

Qσ(t) = const. , Pσ(t) = const. (16.101)

Once the HJE is solved, one must invert the relations Γσ = ∂S(q, Λ, t)/∂Λσ to obtain
q(Q,P, t). This is possible only if

det

(
∂2S

∂qα ∂Λβ

)
6= 0 , (16.102)
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which is known as the Hessian condition.

It is worth noting that the HJE may have several solutions. For example, consider the case
of the free particle, with H(q, p) = p2/2m. The HJE is

1

2m

(
∂S

∂q

)2

+
∂S

∂t
= 0 . (16.103)

One solution of the HJE is

S(q, Λ, t) =
m (q − Λ)2

2t
. (16.104)

For this we find

Γ =
∂S

∂Λ
= −m

t
(q − Λ) ⇒ q(t) = Λ− Γ

m
t . (16.105)

Here Λ = q(0) is the initial value of q, and Γ = −p is minus the momentum.

Another equally valid solution to the HJE is

S(q, Λ, t) = q
√

2mΛ − Λ t . (16.106)

This yields

Γ =
∂S

∂Λ
= q

√
2m

Λ
− t ⇒ q(t) =

√
Λ

2m
(t+ Γ ) . (16.107)

For this solution, Λ is the energy and Γ may be related to the initial value of q(t) =
Γ
√
Λ/2m.

16.7.3 Time-independent Hamiltonians

When H has no explicit time dependence, we may reduce the order of the HJE by one,
writing

S(q, Λ, t) = W (q, Λ) + T (Λ, t) . (16.108)

The HJE becomes

H

(
q,
∂W

∂q

)
= −∂T

∂t
. (16.109)

Note that the LHS of the above equation is independent of t, and the RHS is independent
of q. Therefore, each side must only depend on the constants Λ, which is to say that each
side must be a constant, which, without loss of generality, we take to be Λ1. Therefore

S(q, Λ, t) = W (q, Λ)− Λ1t . (16.110)

The function W (q, Λ) is called Hamilton’s characteristic function. The HJE now takes the
form

H

(
q1, . . . , qn,

∂W

∂q1
, . . . ,

∂W

∂qn

)
= Λ1 . (16.111)

Note that adding an arbitrary constant C to S generates the same equation, and simply
shifts the last constant Λn+1 → Λn+1 + C. This is equivalent to replacing t by t− t0 with

t0 = C/Λ1, i.e. it just redefines the zero of the time variable.
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16.7.4 Example: one-dimensional motion

As an example of the method, consider the one-dimensional system,

H(q, p) =
p2

2m
+ U(q) . (16.112)

The HJE is
1

2m

(
∂S

∂q

)2

+ U(q) = Λ . (16.113)

which may be recast as
∂S

∂q
=
√

2m
[
Λ− U(q)

]
, (16.114)

with solution

S(q, Λ, t) =
√

2m

q∫
dq′
√
Λ− U(q′)− Λ t . (16.115)

We now have

p =
∂S

∂q
=
√

2m
[
Λ− U(q)

]
, (16.116)

as well as

Γ =
∂S

∂Λ
=

√
m

2

∫ q(t) dq′√
Λ− U(q′)

− t . (16.117)

Thus, the motion q(t) is given by quadrature:

Γ + t =

√
m

2

q(t)∫
dq′√

Λ− U(q′)
, (16.118)

where Λ and Γ are constants. The lower limit on the integral is arbitrary and merely shifts
t by another constant. Note that Λ is the total energy.

16.7.5 Separation of variables

It is convenient to first work an example before discussing the general theory. Consider the
following Hamiltonian, written in spherical polar coordinates:

H =
1

2m

(
p2
r +

p2
θ

r2
+

p2
φ

r2 sin2θ

)
+

potential U(r,θ,φ)︷ ︸︸ ︷
A(r) +

B(θ)

r2
+

C(φ)

r2 sin2θ
. (16.119)

We seek a solution with the characteristic function

W (r, θ, φ) = Wr(r) +Wθ(θ) +Wφ(φ) . (16.120)
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The HJE is then

1

2m

(
∂Wr

∂r

)2
+

1

2mr2

(
∂Wθ

∂θ

)2
+

1

2mr2 sin2θ

(
∂Wφ

∂φ

)2

+A(r) +
B(θ)

r2
+

C(φ)

r2 sin2θ
= Λ1 = E . (16.121)

Multiply through by r2 sin2θ to obtain

1

2m

(
∂Wφ

∂φ

)2
+ C(φ) = − sin2θ

{
1

2m

(
∂Wθ

∂θ

)2

+B(θ)

}

− r2 sin2θ

{
1

2m

(
∂Wr

∂r

)2

+A(r)− Λ1

}
. (16.122)

The LHS is independent of (r, θ), and the RHS is independent of φ. Therefore, we may set

1

2m

(
∂Wφ

∂φ

)2
+ C(φ) = Λ2 . (16.123)

Proceeding, we replace the LHS in eqn. 16.122 with Λ2, arriving at

1

2m

(
∂Wθ

∂θ

)2
+B(θ) +

Λ2

sin2θ
= −r2

{
1

2m

(
∂Wr

∂r

)2
+A(r)− Λ1

}
. (16.124)

The LHS of this equation is independent of r, and the RHS is independent of θ. Therefore,

1

2m

(
∂Wθ

∂θ

)2
+B(θ) +

Λ2

sin2θ
= Λ3 . (16.125)

We’re left with
1

2m

(
∂Wr

∂r

)2
+A(r) +

Λ3

r2
= Λ1 . (16.126)

The full solution is therefore

S(q, Λ, t) =
√

2m

r∫
dr′
√
Λ1 −A(r′)− Λ3

r′2
(16.127)

+
√

2m

θ∫
dθ′
√
Λ3 −B(θ′)− Λ2

sin2θ′

+
√

2m

φ∫
dφ′

√
Λ2 −C(φ′)− Λ1t . (16.128)
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We then have

Γ1 =
∂S

∂Λ1
=

∫ r(t)
√

m
2 dr

′
√
Λ1 −A(r′)− Λ3 r

′−2
− t (16.129)

Γ2 =
∂S

∂Λ2
= −

∫ θ(t)
√

m
2 dθ

′

sin2θ′
√
Λ3 −B(θ′)− Λ2 csc2θ′

+

∫ φ(t)
√

m
2 dφ

′
√
Λ2 − C(φ′)

(16.130)

Γ3 =
∂S

∂Λ3
= −

∫ r(t)
√

m
2 dr

′

r′2
√
Λ1 −A(r′)− Λ3 r

′−2
+

∫ θ(t)
√

m
2 dθ

′
√
Λ3 −B(θ′)− Λ2 csc2θ′

. (16.131)

The game plan here is as follows. The first of the above trio of equations is inverted to yield
r(t) in terms of t and constants. This solution is then invoked in the last equation (the upper
limit on the first integral on the RHS) in order to obtain an implicit equation for θ(t), which
is invoked in the second equation to yield an implicit equation for φ(t). The net result is

the motion of the system in terms of time t and the six constants (Λ1, Λ2, Λ3, Γ1, Γ2, Γ3). A
seventh constant, associated with an overall shift of the zero of t, arises due to the arbitrary
lower limits of the integrals.

In general, the separation of variables method begins with3

W (q, Λ) =
n∑

σ=1

Wσ(qσ, Λ) . (16.132)

Each Wσ(qσ, Λ) may be regarded as a function of the single variable qσ, and is obtained by
satisfying an ODE of the form4

Hσ

(
qσ,

dWσ

dqσ

)
= Λσ . (16.133)

We then have

pσ =
∂Wσ

∂qσ
, Γσ =

∂W

∂Λσ
+ δσ,1 t . (16.134)

Note that while each Wσ depends on only a single qσ, it may depend on several of the Λσ.

16.7.6 Example #2 : point charge plus electric field

Consider a potential of the form

U(r) =
k

r
− Fz , (16.135)

which corresponds to a charge in the presence of an external point charge plus an external
electric field. This problem is amenable to separation in parabolic coordinates, (ξ, η, ϕ):

x =
√
ξη cosϕ , y =

√
ξη sinϕ , z = 1

2 (ξ − η) . (16.136)

3Here we assume complete separability . A given system may only be partially separable.
4Hσ(qσ, pσ) may also depend on several of the Λα . See e.g. eqn. 16.126, which is of the form

Hr

`

r, ∂rWr, Λ3

´

= Λ1.
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Note that

ρ ≡
√
x2 + y2 =

√
ξη (16.137)

r =
√
ρ2 + z2 = 1

2(ξ + η) . (16.138)

The kinetic energy is

T = 1
2m
(
ρ̇2 + ρ2 ϕ̇2 + ż2

)

= 1
8m (ξ + η)

(
ξ̇2

ξ
+
η̇2

η

)
+ 1

2mξη ϕ̇2 , (16.139)

and hence the Lagrangian is

L = 1
8m (ξ + η)

(
ξ̇2

ξ
+
η̇2

η

)
+ 1

2mξη ϕ̇2 − 2k

ξ + η
+ 1

2F (ξ − η) . (16.140)

Thus, the conjugate momenta are

pξ =
∂L

∂ξ̇
= 1

4m (ξ + η)
ξ̇

ξ
(16.141)

pη =
∂L

∂η̇
= 1

4m (ξ + η)
η̇

η
(16.142)

pϕ =
∂L

∂ϕ̇
= mξη ϕ̇ , (16.143)

and the Hamiltonian is

H = pξ ξ̇ + pη η̇ + pϕ ϕ̇ (16.144)

=
2

m

(
ξ p2

ξ + η p2
η

ξ + η

)
+

p2
ϕ

2mξη
+

2k

ξ + η
− 1

2F (ξ − η) . (16.145)

Notice that ∂H/∂t = 0, which means dH/dt = 0, i.e. H = E ≡ Λ1 is a constant of the

motion. Also, ϕ is cyclic in H, so its conjugate momentum pϕ is a constant of the motion.

We write

S(q, Λ) = W (q, Λ)− Et (16.146)

= Wξ(ξ, Λ) +Wη(η,Λ) +Wϕ(ϕ,Λ) −Et . (16.147)

with E = Λ1. Clearly we may take

Wϕ(ϕ,Λ) = Pϕ ϕ , (16.148)
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where Pϕ = Λ2. Multiplying the Hamilton-Jacobi equation by 1
2m (ξ + η) then gives

ξ

(
dWξ

dξ

)2

+
P 2
ϕ

4ξ
+mk − 1

4Fξ
2 − 1

2mEξ

= −η
(
dWη

dη

)2

− P 2
ϕ

4η
− 1

4Fη
2 + 1

2mEη ≡ Υ , (16.149)

where Υ = Λ3 is the third constant: Λ = (E,Pϕ, Υ ). Thus,

S
(

q︷ ︸︸ ︷
ξ, η, ϕ;E,Pϕ, Υ︸ ︷︷ ︸

Λ

)
=

∫ ξ

dξ′

√
1
2mE +

Υ −mk
ξ′

+ 1
4mFξ

′ −
P 2
ϕ

4ξ′2

+

∫ η

dη′

√
1
2mE −

Υ

η′
− 1

4mFη
′ −

P 2
ϕ

4η′2

+ Pϕ ϕ− Et . (16.150)

16.7.7 Example #3 : Charged Particle in a Magnetic Field

The Hamiltonian is

H =
1

2m

(
p− e

c
A
)2

. (16.151)

We choose the gauge A = Bxŷ, and we write

S(x, y, P1, P2) = Wx(x, P1, P2) +Wy(y, P1, P2)− P1 t . (16.152)

Note that here we will consider S to be a function of {qσ} and {Pσ}.

The Hamilton-Jacobi equation is then

(
∂Wx

∂x

)2

+

(
∂Wy

∂y
− eBx

c

)2

= 2mP1 . (16.153)

We solve by writing

Wy = P2 y ⇒
(
dWx

dx

)2

+

(
P2 −

eBx

c

)2

= 2mP1 . (16.154)

This equation suggests the substitution

x =
cP2

eB
+

c

eB

√
2mP1 sin θ . (16.155)

in which case
∂x

∂θ
=

c

eB

√
2mP1 cos θ (16.156)
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and
∂Wx

∂x
=
∂Wx

∂θ
· ∂θ
∂x

=
eB

c
√

2mP1

1

cos θ

∂Wx

∂θ
. (16.157)

Substitution this into eqn. 16.154, we have

∂Wx

∂θ
=

2mcP1

eB
cos2θ , (16.158)

with solution

Wx =
mcP1

eB
θ +

mcP1

2eB
sin(2θ) . (16.159)

We then have

px =
∂Wx

∂x
=
∂Wx

∂θ

/
∂x

∂θ
=
√

2mP1 cos θ (16.160)

and

py =
∂Wy

∂y
= P2 . (16.161)

The type-II generator we seek is then

S(q, P, t) =
mcP1

eB
θ +

mcP1

2eB
sin(2θ) + P2 y − P1 t , (16.162)

where

θ =
eB

c
√

2mP1
sin−1

(
x− cP2

eB

)
. (16.163)

Note that, from eqn. 16.155, we may write

dx =
c

eB
dP2 +

mc

eB

1√
2mP1

sin θ dP1 +
c

eB

√
2mP1 cos θ dθ , (16.164)

from which we derive

∂θ

∂P1
= −tan θ

2P1
,

∂θ

∂P2
= − 1√

2mP1 cos θ
. (16.165)

These results are useful in the calculation of Q1 and Q2:

Q1 =
∂S

∂P1

=
mc

eB
θ +

mcP1

eB

∂θ

∂P1
+

mc

2eB
sin(2θ) +

mcP1

eB
cos(2θ)

∂θ

∂P1
− t

=
mc

eB
θ − t (16.166)

and

Q2 =
∂S

∂P2

= y +
mcP1

eB

[
1 + cos(2θ)

] ∂θ
∂P2

= y − c

eB

√
2mP1 cos θ . (16.167)
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Now since H̃(P,Q) = 0, we have that Q̇σ = 0, which means that each Qσ is a constant. We
therefore have the following solution:

x(t) = x0 +A sin(ωct+ δ) (16.168)

y(t) = y0 +A cos(ωct+ δ) , (16.169)

where ωc = eB/mc is the ‘cyclotron frequency’, and

x0 =
cP2

eB
, y0 = Q2 , δ ≡ ωcQ1 , A =

c

eB

√
2mP1 . (16.170)

16.8 Action-Angle Variables

16.8.1 Circular Phase Orbits: Librations and Rotations

In a completely integrable system, the Hamilton-Jacobi equation may be solved by separa-
tion of variables. Each momentum pσ is a function of only its corresponding coordinate qσ
plus constants – no other coordinates enter:

pσ =
∂Wσ

∂qσ
= pσ(qσ, Λ) . (16.171)

The motion satisfies
Hσ(qσ, pσ) = Λσ . (16.172)

The level sets of Hσ are curves Cσ. In general, these curves each depend on all of the
constants Λ, so we write Cσ = Cσ(Λ). The curves Cσ are the projections of the full motion

onto the (qσ, pσ) plane. In general we will assume the motion, and hence the curves Cσ,
is bounded . In this case, two types of projected motion are possible: librations and rota-
tions. Librations are periodic oscillations about an equilibrium position. Rotations involve
the advancement of an angular variable by 2π during a cycle. This is most conveniently
illustrated in the case of the simple pendulum, for which

H(pφ, φ) =
p2
φ

2I
+ 1

2Iω
2
(
1− cosφ

)
. (16.173)

• When E < I ω2, the momentum pφ vanishes at φ = ± cos−1(2E/Iω2). The system
executes librations between these extreme values of the angle φ.

• When E > I ω2, the kinetic energy is always positive, and the angle advances mono-
tonically, executing rotations.

In a completely integrable system, each Cσ is either a libration or a rotation5. Both librations
and rotations are closed curves. Thus, each Cσ is in general homotopic to (= “can be

5Cσ may correspond to a separatrix, but this is a nongeneric state of affairs.
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Figure 16.2: Phase curves for the simple pendulum, showing librations (in blue), rotations
(in green), and the separatrix (in red). This phase flow is most correctly viewed as taking
place on a cylinder, obtained from the above sketch by identifying the lines φ = π and
φ = −π.

continuously distorted to yield”) a circle, S
1. For n freedoms, the motion is therefore

confined to an n-torus, T
n:

T
n =

n times︷ ︸︸ ︷
S

1 × S
1 × · · · × S

1 . (16.174)

These are called invariant tori (or invariant manifolds). There are many such tori, as there

are many Cσ curves in each of the n two-dimensional submanifolds.

Invariant tori never intersect! This is ruled out by the uniqueness of the solution to the
dynamical system, expressed as a set of coupled ordinary differential equations.

Note also that phase space is of dimension 2n, while the invariant tori are of dimension n.
Phase space is ‘covered’ by the invariant tori, but it is in general difficult to conceive of how
this happens. Perhaps the most accessible analogy is the n = 1 case, where the ‘1-tori’ are
just circles. Two-dimensional phase space is covered noninteracting circular orbits. (The
orbits are topologically equivalent to circles, although geometrically they may be distorted.)
It is challenging to think about the n = 2 case, where a four-dimensional phase space is
filled by nonintersecting 2-tori.

16.8.2 Action-Angle Variables

For a completely integrable system, one can transform canonically from (q, p) to new co-
ordinates (φ, J) which specify a particular n-torus T

n as well as the location on the torus,

which is specified by n angle variables. The {Jσ} are ‘momentum’ variables which specify
the torus itself; they are constants of the motion since the tori are invariant. They are
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called action variables. Since J̇σ = 0, we must have

J̇σ = − ∂H
∂φσ

= 0 =⇒ H = H(J) . (16.175)

The {φσ} are the angle variables.

The coordinate φσ describes the projected motion along Cσ, and is normalized by
∮

Cσ

dφσ = 2π (once around Cσ) . (16.176)

The dynamics of the angle variables are given by

φ̇σ =
∂H

∂Jσ
≡ νσ(J) . (16.177)

Thus,
φσ(t) = φσ(0) + νσ(J) t . (16.178)

The
{
νσ(J)

}
are frequencies describing the rate at which the Cσ are traversed; Tσ(J) =

2π/νσ(J) is the period.

16.8.3 Canonical Transformation to Action-Angle Variables

The {Jσ} determine the {Cσ}; each qσ determines a point on Cσ. This suggests a type-II

transformation, with generator F2(q, J):

pσ =
∂F2

∂qσ
, φσ =

∂F2

∂Jσ
. (16.179)

Note that6

2π =

∮

Cσ

dφσ =

∮

Cσ

d

(
∂F2

∂Jσ

)
=

∮

Cσ

∂2F2

∂Jσ ∂qσ
dqσ =

∂

∂Jσ

∮

Cσ

pσ dqσ , (16.180)

which suggests the definition

Jσ =
1

2π

∮

Cσ

pσ dqσ . (16.181)

I.e. Jσ is (2π)−1 times the area enclosed by Cσ.

If, separating variables,

W (q, Λ) =
∑

σ

Wσ(qσ, Λ) (16.182)

6In general, we should write d
`

∂F2

∂Jσ

´

= ∂2F2

∂Jσ ∂qα
dqα with a sum over α. However, in eqn. 16.180 all

coordinates and momenta other than qσ and pσ are held fixed. Thus, α = σ is the only term in the sum
which contributes.
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is Hamilton’s characteristic function for the transformation (q, p)→ (Q,P ), then

Jσ =
1

2π

∮

Cσ

∂Wσ

∂qσ
dqσ = Jσ(Λ) (16.183)

is a function only of the {Λα} and not the {Γα}. We then invert this relation to obtain
Λ(J), to finally obtain

F2(q, J) = W
(
q, Λ(J)

)
=
∑

σ

Wσ

(
qσ, Λ(J)

)
. (16.184)

Thus, the recipe for canonically transforming to action-angle variable is as follows:

(1) Separate and solve the Hamilton-Jacobi equation for W (q, Λ) =
∑

σWσ(qσ, Λ).

(2) Find the orbits Cσ – the level sets of satisfying Hσ(qσ, pσ) = Λσ.

(3) Invert the relation Jσ(Λ) = 1
2π

∮
Cσ

∂Wσ
∂qσ

dqσ to obtain Λ(J).

(4) F2(q, J) =
∑

σWσ

(
qσ, Λ(J)

)
is the desired type-II generator7.

16.8.4 Example : Harmonic Oscillator

The Hamiltonian is

H =
p2

2m
+ 1

2mω
2
0q

2 , (16.185)

hence the Hamilton-Jacobi equation is

(
dW

dq

)2

+m2ω2
0q

2 = 2mΛ . (16.186)

Thus,

p =
dW

dq
= ±

√
2mΛ−m2ω2

0q
2 . (16.187)

We now define

q ≡
(

2Λ

mω2
0

)1/2

sin θ ⇒ p =
√

2mΛ cos θ , (16.188)

in which case

J =
1

2π

∮
p dq =

1

2π
· 2Λ
ω0
·

2π∫

0

dθ cos2θ =
Λ

ω0
. (16.189)

7Note that F2(q, J) is time-independent. I.e. we are not transforming to H̃ = 0, but rather to H̃ = H̃(J).
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Solving the HJE, we write
dW

dθ
=
∂q

∂θ
· dW
dq

= 2J cos2θ . (16.190)

Integrating,
W = Jθ + 1

2J sin 2θ , (16.191)

up to an irrelevant constant. We then have

φ =
∂W

∂J

∣∣∣∣
q

= θ + 1
2 sin 2θ + J

(
1 + cos 2θ

) ∂θ
∂J

∣∣∣∣
q

. (16.192)

To find (∂θ/∂J)q, we differentiate q =
√

2J/mω0 sin θ:

dq =
sin θ√
2mω0J

dJ +

√
2J

mω0
cos θ dθ ⇒ ∂θ

∂J

∣∣∣∣
q

= − 1

2J
tan θ . (16.193)

Plugging this result into eqn. 16.192, we obtain φ = θ. Thus, the full transformation is

q =

(
2J

mω0

)1/2

sinφ , p =
√

2mω0J cosφ . (16.194)

The Hamiltonian is
H = ω0 J , (16.195)

hence φ̇ = ∂H
∂J = ω0 and J̇ = −∂H

∂φ = 0, with solution φ(t) = φ(0) + ω0 t and J(t) = J(0).

16.8.5 Example : Particle in a Box

Consider a particle in an open box of dimensions Lx × Ly moving under the influence of
gravity. The bottom of the box lies at z = 0. The Hamiltonian is

H =
p2
x

2m
+

p2
y

2m
+

p2
z

2m
+mgz . (16.196)

Step one is to solve the Hamilton-Jacobi equation via separation of variables. The Hamilton-
Jacobi equation is written

1

2m

(
∂Wx

∂x

)2
+

1

2m

(
∂Wy

∂y

)2
+

1

2m

(
∂Wz

∂z

)2
+mgz = E ≡ Λz . (16.197)

We can solve for Wx,y by inspection:

Wx(x) =
√

2mΛx x , Wy(y) =
√

2mΛy y . (16.198)

We then have8

W ′
z(z) = −

√
2m
(
Λz − Λx − Λy −mgz

)
(16.199)

Wz(z) =
2
√

2

3
√
mg

(
Λz − Λx − Λy −mgz

)3/2
. (16.200)

8Our choice of signs in taking the square roots for W ′
x, W ′

y, and W ′
z is discussed below.
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Figure 16.3: The librations Cz and Cx. Not shown is Cy, which is of the same shape as Cx.

Step two is to find the Cσ. Clearly px,y =
√

2mΛx,y. For fixed px, the x motion proceeds
from x = 0 to x = Lx and back, with corresponding motion for y. For x, we have

pz(z) = W ′
z(z) =

√
2m
(
Λz − Λx − Λy −mgz

)
, (16.201)

and thus Cz is a truncated parabola, with zmax = (Λz − Λx − Λy)/mg.

Step three is to compute J(Λ) and invert to obtain Λ(J). We have

Jx =
1

2π

∮

Cx

px dx =
1

π

Lx∫

0

dx
√

2mΛx =
Lx
π

√
2mΛx (16.202)

Jy =
1

2π

∮

Cy

py dy =
1

π

Ly∫

0

dy
√

2mΛy =
Ly
π

√
2mΛy (16.203)

and

Jz =
1

2π

∮

Cz

pz dz =
1

π

zmax∫

0

dx
√

2m
(
Λz − Λx − Λy −mgz

)

=
2
√

2

3π
√
mg

(
Λz − Λx − Λy

)3/2
. (16.204)

We now invert to obtain

Λx =
π2

2mL2
x

J2
x , Λy =

π2

2mL2
y

J2
y (16.205)

Λz =

(
3π
√
mg

2
√

2

)2/3

J2/3
z +

π2

2mL2
x

J2
x +

π2

2mL2
y

J2
y . (16.206)
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F2

(
x, y, z, Jx, Jy, Jz

)
=
πx

Lx
Jx +

πy

Ly
Jy + π

(
J2/3
z − 2m2/3g1/3z

(3π)2/3

)3/2

. (16.207)

We now find

φx =
∂F2

∂Jx
=
πx

Lx
, φy =

∂F2

∂Jy
=
πy

Ly
(16.208)

and

φz =
∂F2

∂Jz
= π

√
1− 2m2/3g1/3z

(3πJz)
2/3

= π

√
1− z

zmax

, (16.209)

where

zmax(Jz) =
(3πJz)

2/3

2m2/3g1/3
. (16.210)

The momenta are

px =
∂F2

∂x
=
πJx
Lx

, py =
∂F2

∂y
=
πJy
Ly

(16.211)

and

pz =
∂F2

∂z
= −
√

2m

((
3π
√
mg

2
√

2

)2/3

J2/3
z −mgz

)1/2

. (16.212)

We note that the angle variables φx,y,z seem to be restricted to the range [0, π], which

seems to be at odds with eqn. 16.180. Similarly, the momenta px,y,z all seem to be positive,
whereas we know the momenta reverse sign when the particle bounces off a wall. The origin
of the apparent discrepancy is that when we solved for the functions Wx,y,z, we had to take
a square root in each case, and we chose a particular branch of the square root. So rather
than Wx(x) =

√
2mΛx x, we should have taken

Wx(x) =

{√
2mΛx x if px > 0√
2mΛx (2Lx − x) if px < 0 .

(16.213)

The relation Jx = (Lx/π)
√

2mΛx is unchanged, hence

Wx(x) =

{
(πx/Lx)Jx if px > 0

2πJx − (πx/Lx)Jx if px < 0 .
(16.214)

and

φx =

{
πx/Lx if px > 0

π(2Lx − x)/Lx if px < 0 .
(16.215)

Now the angle variable φx advances by 2π during the cycle Cx. Similar considerations apply
to the y and z sectors.
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16.8.6 Kepler Problem in Action-Angle Variables

This is discussed in detail in standard texts, such as Goldstein. The potential is V (r) =
−k/r, and the problem is separable. We write9

W (r, θ, ϕ) = Wr(r) +Wθ(θ) +Wϕ(ϕ) , (16.216)

hence

1

2m

(
∂Wr

∂r

)2
+

1

2mr2

(
∂Wθ

∂θ

)2
+

1

2mr2 sin2θ

(
∂Wϕ

∂ϕ

)2
+ V (r) = E ≡ Λr . (16.217)

Separating, we have

1

2m

(
dWϕ

dϕ

)2
= Λϕ ⇒ Jϕ =

∮

Cϕ

dϕ
dWϕ

dϕ
= 2π

√
2mΛϕ . (16.218)

Next we deal with the θ coordinate:

1

2m

(
dWθ

dθ

)2
= Λθ −

Λϕ

sin2θ
⇒

Jθ = 4
√

2mΛθ

θ0∫

0

dθ
√

1−
(
Λϕ/Λθ

)
csc2θ

= 2π
√

2m
(√

Λθ −
√
Λϕ

)
, (16.219)

where θ0 = sin−1(Λϕ/Λθ). Finally, we have10

1

2m

(
dWr

dr

)2

= E +
k

r
− Λθ
r2

⇒

Jr =

∮

Cr

dr

√
2m

(
E +

k

r
− Λθ
r2

)

= −(Jθ + Jϕ) + πk

√
2m

|E| , (16.220)

where we’ve assumed E < 0, i.e. bound motion.

Thus, we find

H = E = − 2π2mk2

(
Jr + Jθ + Jϕ

)2 . (16.221)

Note that the frequencies are completely degenerate:

ν ≡ νr,θ,ϕ =
∂H

∂Jr,θ,ϕ
=

4π2mk2

(
Jr + Jθ + Jϕ

)3 =

(
π2mk2

2|E|3

)1/2

. (16.222)

9We denote the azimuthal angle by ϕ to distinguish it from the AA variable φ.
10The details of performing the integral around Cr are discussed in e.g. Goldstein.
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This threefold degeneracy may be removed by a transformation to new AA variables,
{

(φr, Jr), (φθ, Jθ), (φϕ, Jϕ)
}
−→

{
(φ1, J1), (φ2, J2), (φ3, J3)

}
, (16.223)

using the type-II generator

F2(φr, φθ, φϕ;J1, J2, J3) = (φϕ − φθ)J1 + (φθ − φr)J2 + φr J3 , (16.224)

which results in

φ1 =
∂F2

∂J1
= φϕ − φθ Jr =

∂F2

∂φr
= J3 − J2 (16.225)

φ2 =
∂F2

∂J2
= φθ − φr Jθ =

∂F2

∂φθ
= J2 − J1 (16.226)

φ3 =
∂F2

∂J3
= φr Jϕ =

∂F2

∂φϕ
= J1 . (16.227)

The new Hamiltonian is

H(J1, J2, J3) = −2π2mk2

J2
3

, (16.228)

whence ν1 = ν2 = 0 and ν3 = ν.

16.8.7 Charged Particle in a Magnetic Field

For the case of the charged particle in a magnetic field, studied above in section 16.7.7, we
found

x =
cP2

eB
+

c

eB

√
2mP1 sin θ (16.229)

and
px =

√
2mP1 cos θ , py = P2 . (16.230)

The action variable J is then

J =

∮
px dx =

2mcP1

eB

2π∫

0

dθ cos2θ =
mcP1

eB
. (16.231)

We then have
W = Jθ + 1

2J sin(2θ) + Py , (16.232)

where P ≡ P2. Thus,

φ =
∂W

∂J

= θ + 1
2 sin(2θ) + J

[
1 + cos(2θ)

] ∂θ
∂J

= θ + 1
2 sin(2θ) + 2J cos2θ ·

(
− tan θ

2J

)

= θ . (16.233)
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The other canonical pair is (Q,P ), where

Q =
∂W

∂P
= y −

√
2cJ

eB
cosφ . (16.234)

Therefore, we have

x =
cP

eB
+

√
2cJ

eB
sinφ , y = Q+

√
2cJ

eB
cosφ (16.235)

and

px =

√
2eBJ

c
cosφ , py = P . (16.236)

The Hamiltonian is

H =
p2
x

2m
+

1

2m

(
py −

eBx

c

)2

=
eBJ

mc
cos2φ+

eBJ

mc
sin2φ

= ωc J , (16.237)

where ωc = eB/mc. The equations of motion are

φ̇ =
∂H

∂J
= ωc , J̇ = −∂H

∂φ
= 0 (16.238)

and

Q̇ =
∂H

∂P
= 0 , Ṗ = −∂H

∂Q
= 0 . (16.239)

Thus, Q, P , and J are constants, and φ(t) = φ0 + ωc t.

16.8.8 Motion on Invariant Tori

The angle variables evolve as

φσ(t) = νσ(J) t+ φσ(0) . (16.240)

Thus, they wind around the invariant torus, specified by {Jσ} at constant rates. In general,

while each φσ executed periodic motion around a circle, the motion of the system as a whole
is not periodic, since the frequencies νσ(J) are not, in general, commensurate. In order for

the motion to be periodic, there must exist a set of integers, {lσ}, such that

n∑

σ=1

lσ νσ(J) = 0 . (16.241)
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This means that the ratio of any two frequencies νσ/να must be a rational number. On a
given torus, there are several possible orbits, depending on initial conditions φ(0). However,
since the frequencies are determined by the action variables, which specify the tori, on a
given torus either all orbits are periodic, or none are.

In terms of the original coordinates q, there are two possibilities:

qσ(t) =
∞∑

ℓ1=−∞
· · ·

∞∑

ℓn=−∞
A

(σ)
ℓ1ℓ2···ℓn e

iℓ1φ1(t) · · · eiℓnφn(t)

≡
∑

ℓ

Aσ
ℓ
eiℓ·φ(t) (libration) (16.242)

or
qσ(t) = q◦σ φσ(t) +

∑

ℓ

Bσ
ℓ e

iℓ·φ(t) (rotation) . (16.243)

For rotations, the variable qσ(t) increased by ∆qσ = 2π q◦σ . R

16.9 Canonical Perturbation Theory

16.9.1 Canonical Transformations and Perturbation Theory

Suppose we have a Hamiltonian

H(ξ, t) = H0(ξ, t) + ǫH1(ξ, t) , (16.244)

where ǫ is a small dimensionless parameter. Let’s implement a type-II transformation,
generated by S(q, P, t):11

H̃(Q,P, t) = H(q, p, t) +
∂

∂t
S(q, P, t) . (16.245)

Let’s expand everything in powers of ǫ:

qσ = Qσ + ǫ q1,σ + ǫ2 q2,σ + . . . (16.246)

pσ = Pσ + ǫ p1,σ + ǫ2 p2,σ + . . . (16.247)

H̃ = H̃0 + ǫ H̃1 + ǫ2 H̃2 + . . . (16.248)

S = qσ Pσ︸ ︷︷ ︸
identity

transformation

+ ǫ S1 + ǫ2 S2 + . . . . (16.249)

Then

Qσ =
∂S

∂Pσ
= qσ + ǫ

∂S1

∂Pσ
+ ǫ2

∂S2

∂Pσ
+ . . . (16.250)

= Qσ +

(
q1,σ +

∂S1

∂Pσ

)
ǫ+

(
q2,σ +

∂S2

∂Pσ

)
ǫ2 + . . .

11Here, S(q, P, t) is not meant to signify Hamilton’s principal function.
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and

pσ =
∂S

∂qσ
= Pσ + ǫ

∂S1

∂qσ
+ ǫ2

∂S2

∂qσ
+ . . . (16.251)

= Pσ + ǫ p1,σ + ǫ2 p2,σ + . . . . (16.252)

We therefore conclude, order by order in ǫ,

qk,σ = −∂Sk
∂Pσ

, pk,σ = +
∂Sk
∂qσ

. (16.253)

Now let’s expand the Hamiltonian:

H̃(Q,P, t) = H0(q, p, t) + ǫH1(q, p, t) +
∂S

∂t
(16.254)

= H0(Q,P, t) +
∂H0

∂Qσ
(qσ −Qσ) +

∂H0

∂Pσ
(pσ − Pσ)

+ ǫH1(Q,P, t) + ǫ
∂

∂t
S1(Q,P, t) +O(ǫ2)

= H0(Q,P, t) +

(
− ∂H0

∂Qσ

∂S1

∂Pσ
+
∂H0

∂Pσ

∂S1

∂Qσ
+
∂S1

∂t
+H1

)
ǫ+O(ǫ2)

= H0(Q,P, t) +

(
H1 +

{
S1,H0

}
+
∂S1

∂t

)
ǫ+O(ǫ2) . (16.255)

In the above expression, we evaluate Hk(q, p, t) and Sk(q, P, t) at q = Q and p = P and
expand in the differences q −Q and p− P . Thus, we have derived the relation

H̃(Q,P, t) = H̃0(Q,P, t) + ǫH̃1(Q,P, t) + . . . (16.256)

with

H̃0(Q,P, t) = H0(Q,P, t) (16.257)

H̃1(Q,P, t) = H1 +
{
S1,H0

}
+
∂S1

∂t
. (16.258)

The problem, though, is this: we have one equation, eqn, 16.258, for the two unknowns H̃1

and S1. Thus, the problem is underdetermined. Of course, we could choose H̃1 = 0, which
basically recapitulates standard Hamilton-Jacobi theory. But we might just as well demand
that H̃1 satisfy some other requirement, such as that H̃0 + ǫ H̃1 being integrable.

Incidentally, this treatment is paralleled by one in quantum mechanics, where a unitary
transformation may be implemented to eliminate a perturbation to lowest order in a small
parameter. Consider the Schrödinger equation,

i~
∂ψ

∂t
= (H0 + ǫH1)ψ , (16.259)
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and define χ by
ψ ≡ eiS/~χ , (16.260)

with
S = ǫ S1 + ǫ2 S2 + . . . . (16.261)

As before, the transformation U ≡ exp(iS/~) collapses to the identity in the ǫ → 0 limit.
Now let’s write the Schrödinger equation for χ. Expanding in powers of ǫ, one finds

i~
∂χ

∂t
= H0

χ+ ǫ

(
H1 +

1

i~

[
S1,H0

]
+
∂S1

∂t

)
χ+ . . . ≡ H̃χ , (16.262)

where [A,B] = AB −BA is the commutator. Note the classical-quantum correspondence,

{A,B} ←→ 1

i~
[A,B] . (16.263)

Again, what should we choose for S1? Usually the choice is made to make the O(ǫ) term
in H̃ vanish. But this is not the only possible simplifying choice.

16.9.2 Canonical Perturbation Theory for n = 1 Systems

Henceforth we shall assumeH(ξ, t) = H(ξ) is time-independent, and we write the perturbed
Hamiltonian as

H(ξ) = H0(ξ) + ǫH1(ξ) . (16.264)

Let (φ0, J0) be the action-angle variables for H0. Then

H̃0(φ0, J0) = H0

(
q(φ0, J0), p(φ0, J0)

)
= H̃0(J0) . (16.265)

We define
H̃1(φ0, J0) = H1

(
q(φ0, J0), p(φ0, J0)

)
. (16.266)

We assume that H̃ = H̃0 + ǫ H̃1 is integrable12, so it, too, possesses action-angle vari-
ables, which we denote by (φ, J)13. Thus, there must be a canonical transformation taking

(φ0, J0)→ (φ, J), with

H̃
(
φ0(φ, J), J0(φ, J)

)
≡ K(J) = E(J) . (16.267)

We solve via a type-II canonical transformation:

S(φ0, J) = φ0J + ǫ S1(φ0, J) + ǫ2 S2(φ0, J) + . . . , (16.268)

where φ0J is the identity transformation. Then

J0 =
∂S

∂φ0
= J + ǫ

∂S1

∂φ0
+ ǫ2

∂S2

∂φ0
+ . . . (16.269)

φ =
∂S

∂J
= φ0 + ǫ

∂S1

∂J
+ ǫ2

∂S2

∂J
+ . . . , (16.270)

12This is always true, in fact, for n = 1.
13We assume the motion is bounded, so action-angle variables may be used.
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and

E(J) = E0(J) + ǫE1(J) + ǫ2E2(J) + . . . (16.271)

= H̃0(φ0, J0) + H̃1(φ0, J0) . (16.272)

We now expand H̃(φ0, J0) in powers of J0 − J :

H̃(φ0, J0) = H̃0(φ0, J0) + ǫ H̃1(φ0, J0) (16.273)

= H̃0(J) +
∂H̃0

∂J
(J0 − J) + 1

2

∂2H̃0

∂J2
(J0 − J)2 + . . .

+ ǫ H̃1(φ0, J0) + ǫ
∂H̃1

∂J
(J0 − J) + . . .

= H̃0(J) +

(
H̃1(φ0, J0) +

∂H̃0

∂J

∂S1

∂φ0

)
ǫ (16.274)

+

(
∂H̃0

∂J

∂S2

∂φ0
+

1

2

∂2H̃0

∂J2

(
∂S1

∂φ0

)2

+
∂H̃1

∂J

∂S1

∂φ0

)
ǫ2 + . . . .

Equating terms, then,

E0(J) = H̃0(J) (16.275)

E1(J) = H̃1(φ0, J) +
∂H̃0

∂J

∂S1

∂φ0
(16.276)

E2(J) =
∂H̃0

∂J

∂S2

∂φ0
+

1

2

∂2H̃0

∂J2

(
∂S1

∂φ0

)2
+
∂H̃1

∂J

∂S1

∂φ0
. (16.277)

How, one might ask, can we be sure that the LHS of each equation in the above hierarchy
depends only on J when each RHS seems to depend on φ0 as well? The answer is that we

use the freedom to choose each Sk to make this so. We demand each RHS be independent

of φ0, which means it must be equal to its average, 〈RHS(φ0) 〉, where

〈
f
(
φ0

)〉
=

2π∫

0

dφ0

2π
f
(
φ0

)
. (16.278)

The average is performed at fixed J and not at fixed J0. In this regard, we note that holding

J constant and increasing φ0 by 2π also returns us to the same starting point. Therefore,

J is a periodic function of φ0. We must then be able to write

Sk(φ0, J) =

∞∑

m=−∞
Sk(J ;m) eimφ0 (16.279)

for each k > 0, in which case
〈
∂Sk
∂φ0

〉
=

1

2π

[
Sk(2π) − Sk(0)

]
= 0 . (16.280)
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Let’s see how this averaging works to the first two orders of the hierarchy. Since H̃0(J) is

independent of φ0 and since ∂S1/∂φ0 is periodic, we have

E1(J) =
〈
H̃1(φ0, J)

〉
+
∂H̃0

∂J

this vanishes!︷ ︸︸ ︷〈
∂S1

∂φ0

〉
(16.281)

and hence S1 must satisfy

∂S1

∂φ0
=

〈
H̃1

〉
− H̃1

ν0(J)
, (16.282)

where ν0(J) = ∂H̃0/∂J . Clearly the RHS of eqn. 16.282 has zero average, and must be a

periodic function of φ0. The solution is S1 = S1(φ0, J) + g(J), where g(J) is an arbitrary

function of J . However, g(J) affects only the difference φ − φ0, changing it by a constant
value g′(J). So there is no harm in taking g(J) = 0.

Next, let’s go to second order in ǫ. We have

E2(J) =

〈
∂H̃1

∂J

∂S1

∂φ0

〉
+ 1

2

∂ν0

∂J

〈(
∂S1

∂φ1

)2〉
+ ν0(J)

this vanishes!︷ ︸︸ ︷〈
∂S2

∂φ0

〉
. (16.283)

The equation for S2 is then

∂S2

∂φ0
=

1

ν2
0(J)

{〈
∂H̃1

∂J

〉〈
H̃0

〉
−
〈
∂H̃1

∂J
H̃0

〉
− ∂H̃1

∂J

〈
H̃1

〉
+
∂H̃1

∂J
H̃1

+
1

2

∂ ln ν0

∂J

(〈
H̃2

1

〉
− 2
〈
H̃1

〉2
+ 2
〈
H̃1

〉
− H̃2

1

)}
. (16.284)

The expansion for the energy E(J) is then

E(J) = H̃0(J) + ǫ
〈
H̃1

〉
+

ǫ2

ν0(J)

{〈
∂H̃1

∂J

〉〈
H̃1

〉
−
〈
∂H̃1

∂J
H̃1

〉

+
1

2

∂ ln ν0

∂J

(〈
H̃2

1 −
〈
H̃1

〉2)
}

+O(ǫ3) . (16.285)

Note that we don’t need S to find E(J)! The perturbed frequencies are

ν(J) =
∂E

∂J
. (16.286)

Sometimes the frequencies are all that is desired. However, we can of course obtain the full
motion of the system via the succession of canonical transformations,

(φ, J) −→ (φ0, J0) −→ (q, p) . (16.287)
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Figure 16.4: Action-angle variables for the harmonic oscillator.

16.9.3 Example : Nonlinear Oscillator

Consider the nonlinear oscillator with Hamiltonian

H(q, p) =

H0︷ ︸︸ ︷
p2

2m
+ 1

2mν
2
0q

2 +1
4ǫαq

4 . (16.288)

The action-angle variables for the harmonic oscillator Hamiltonian H0 are

φ0 = tan−1
(
mvq/p) , J0 =

p2

2mν0
+ 1

2mν0q
2 , (16.289)

and the relation between (φ0, J0) and (q, p) is further depicted in fig. 16.4. Note H0 = ν0 J0.
For the full Hamiltonian, we have

H̃(φ0, J0) = ν0J0 + 1
4ǫ α

(√
2J0

mν0
sinφ0

)4

= ν0J0 +
ǫα

m2ν2
0

J2
0 sin4φ0 . (16.290)

We may now evaluate

E1(J) =
〈
H̃1

〉
=

αJ2

m2ν2
0

2π∫

0

dφ0

2π
sin4φ0 =

3αJ2

8m2ν2
0

. (16.291)

The frequency, to order ǫ, is

ν(J) = ν0 +
3 ǫ αJ

4m2ν2
0

. (16.292)

Now to lowest order in ǫ, we may replace J by J0 = 1
2mν0A

2, where A is the amplitude of
the q motion. Thus,

ν(A) = ν0 +
3ǫα

8mν0
. (16.293)
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This result agrees with that obtained via heavier lifting, using the Poincaré-Lindstedt
method.

Next, let’s evaluate the canonical transformation (φ0, J0)→ (φ, J). We have

ν0

∂S1

∂φ0
=

αJ2

m2ν2
0

(
3
8 − sin4φ0

)
⇒

S(φ0, J) = φ0 J +
ǫαJ2

8m2ν3
0

(
3 + 2 sin2φ0

)
sinφ0 cosφ0 +O(ǫ2) . (16.294)

Thus,

φ =
∂S

∂J
= φ0 +

ǫαJ

4m2ν3
0

(
3 + 2 sin2φ0

)
sinφ0 cosφ0 +O(ǫ2) (16.295)

J0 =
∂S

∂φ0

= J +
ǫαJ2

8m2ν3
0

(
4 cos 2φ0 − cos 4φ0

)
+O(ǫ2) . (16.296)

Again, to lowest order, we may replace J by J0 in the above, whence

J = J0 −
ǫαJ2

0

8m2ν3
0

(
4 cos 2φ0 − cos 4φ0

)
+O(ǫ2) (16.297)

φ = φ0 +
ǫαJ0

8m2ν3
0

(
3 + 2 sin2φ0

)
sin 2φ0 +O(ǫ2) . (16.298)

To obtain (q, p) in terms of (φ, J) is not analytically tractable – the relations cannot be
analytically inverted.

16.9.4 n > 1 Systems : Degeneracies and Resonances

Generalizing the procedure we derived for n = 1, we obtain

Jα0 =
∂S

∂φα0
= Jα + ǫ

∂S1

∂φα0
+ ǫ2

∂S2

∂φα0
+ . . . (16.299)

φα =
∂S

∂Jα
= φα0 + ǫ

∂S1

∂Jα
+ ǫ2

∂S2

∂Jα
+ . . . (16.300)

and

E0(J) = H̃0(J) (16.301)

E1(J) = H̃0(φ0,J) + να0 (J)
∂S1

∂φα0
(16.302)

E2(J) =
∂H̃0

∂Jα

∂S2

∂φα0
+

1

2

∂να0
∂Jβ

∂S1

∂φα0

∂S1

∂φβ0
+ να0

∂S1

∂φα0
. (16.303)

We now implement the averaging procedure, with

〈
f(J1, . . . , Jn)

〉
=

2π∫

0

dφ1
0

2π
· · ·

2π∫

0

dφn0
2π

f
(
φ1

0, . . . , φ
n
0 , J

1, . . . , Jn
)
. (16.304)
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The equation for S1 is

να0
∂S1

∂φα0
=
〈
H̃1

〉
− H̃1 ≡ −

∑

ℓ

′
V

ℓ
eiℓ·φ , (16.305)

where ℓ = {ℓ1, ℓ2, . . . , ℓn}, with each ℓσ an integer, and with ℓ 6= 0. The solution is

S1(φ0,J) = i
∑

l

′ Vℓ

ℓ · ν0
eiℓ·φ . (16.306)

where ℓ · ν0 = lανα0 . When two or more of the frequencies να(J) are commensurate, there
exists a set of integers l such that the denominator of D(l) vanishes. But even when the
frequencies are not rationally related, one can approximate the ratios να0 /ν

α′

0 by rational
numbers, and for large enough l the denominator can become arbitrarily small.

Periodic time-dependent perturbations present a similar problem. Consider the system

H(φ,J , t) = H0(J) + ǫ V (φ,J , t) , (16.307)

where V (t+ T ) = V (t). This means we may write

V (φ,J , t) =
∑

k

Vk(φ,J) e−ikΩt (16.308)

=
∑

k

∑

ℓ

V̂k,ℓ(J) eiℓ·φ e−ikΩt . (16.309)

by Fourier transforming from both time and angle variables; here Ω = 2π/T . Note that
V (φ,J , t) is real if V ∗

k,ℓ = V−k,−l. The equations of motion are

J̇α = − ∂H
∂φα

= −iǫ
∑

k,ℓ

lα V̂k,ℓ(J) eiℓ·φ e−ikΩt (16.310)

φ̇α = +
∂H

∂Jα
= να0 (J) + ǫ

∑

k,ℓ

∂V̂k,ℓ(J)

∂Jα
eiℓ·φ e−ikΩt . (16.311)

We now expand in ǫ:

φα = φα0 + ǫ φα1 + ǫ2 φα2 + . . . (16.312)

Jα = Jα0 + ǫ Jα1 + ǫ2 Jα2 + . . . . (16.313)

To order ǫ0, Jα = Jα0 and φα0 = να0 t+ βα0 . To order ǫ1,

J̇α1 = −i
∑

k,l

lα V̂k,ℓ(J0) e
i(ℓ·ν0−kΩ)t eiℓ·β0 (16.314)

and

φ̇α1 =
∂να0
∂Jβ

Jβ1 +
∑

k,ℓ

∂V̂k,ℓ(J)

∂Jα
ei(ℓ·ν0−kΩ)t eiℓ·β0 , (16.315)
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where derivatives are evaluated at J = J0. The solution is:

Jα1 =
∑

k,ℓ

lα V̂k,ℓ(J0)

kΩ − ℓ · ν0
ei(ℓ·ν0−kΩ)t eiℓ·β0 (16.316)

φα1 =

{
∂να0
∂Jβ

lβ V̂k,ℓ(J0)

(kΩ − ℓ · ν0)2
+
∂V̂k,ℓ(J)

∂Jα
1

kΩ − ℓ · ν0

}
ei(ℓ·ν0−kΩ)t eiℓ·β0 . (16.317)

When the resonance condition,
kΩ = ℓ · ν0(J0) , (16.318)

holds, the denominators vanish, and the perturbation theory breaks down.

16.9.5 Particle-Wave Interaction

Consider a particle of charge e moving in the presence of a constant magnetic field B = Bẑ
and a space- and time-varying electric field E(x, t), described by the Hamiltonian

H =
1

2m

(
p− e

cA
)2

+ ǫ eV0 cos(k⊥x+ kzz − ωt) , (16.319)

where ǫ is a dimensionless expansion parameter. Working in the gauge A = Bxŷ, from our
earlier discussions in section 16.7.7, we may write

H = ωcJ +
p2
z

2m
+ ǫ eV0 cos

(
kzz +

k⊥P
mωc

+ k⊥

√
2J

mωc
sinφ− ωt

)
. (16.320)

Here,

x =
P

mωc
+

√
2J

mωc
sinφ , y = Q+

√
2J

mωc
cosφ , (16.321)

with ωc = eB/mc, the cyclotron frequency. We now make a mixed canonical transformation,
generated by

F = φJ ′ +
(
kzz +

k⊥P
mωc

− ωt
)
K ′ − PQ′ , (16.322)

where the new sets of conjugate variables are
{
(φ′, J ′) , (Q′, P ′) , (ψ′,K ′)

}
. We then have

φ′ =
∂F

∂J ′ = φ J =
∂F

∂φ
= J ′ (16.323)

Q = −∂F
∂P

= −k⊥K
′

mωc
+Q′ P ′ = − ∂F

∂Q′ = P (16.324)

ψ′ =
∂F

∂K ′ = kzz +
k⊥P
mωc

− ωt pz =
∂F

∂z
= kzK

′ . (16.325)

The transformed Hamiltonian is

H ′ = H +
∂F

∂t

= ωcJ
′ +

k2
z

2m
K ′2 − ωK ′ + ǫ eV0 cos

(
ψ′ + k⊥

√
2J ′

mωc
sinφ′

)
. (16.326)
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We will now drop primes and simply write H = H0 + ǫH1, with

H0 = ωcJ +
k2
z

2m
K2 − ωK (16.327)

H1 = eV0 cos

(
ψ + k⊥

√
2J

mωc
sinφ

)
. (16.328)

When ǫ = 0, the frequencies associated with the φ and ψ motion are

ω0
φ =

∂H0

∂φ
= ωc , ω0

ψ =
∂H0

∂ψ
=
k2
zK

m
− ω = kzvz − ω , (16.329)

where vz = pz/m is the z-component of the particle’s velocity. Now let us solve eqn. 16.305:

ω0
φ

∂S1

∂φ
+ ω0

ψ

∂S1

∂ψ
= 〈H1 〉 −H1 . (16.330)

This yields

ωc

∂S1

∂φ
+

(
k2
zK

m
− ω

)
∂S1

∂ψ
= −eA0 cos

(
ψ + k⊥

√
2J

mωc
sinφ

)

= −eA0

∞∑

n=−∞
Jn

(
k⊥

√
2J

mωc

)
cos(ψ + nφ) , (16.331)

where we have used the result

eiz sin θ =

∞∑

n=−∞
Jn(z) e

inθ . (16.332)

The solution for S1 is

S1 =
∑

n

eV0

ω − nωc − k2
zK̄/m

Jn

(
k⊥

√
2J̄

mωc

)
sin(ψ + nφ) . (16.333)

We then have new action variables J̄ and K̄, where

J = J̄ + ǫ
∂S1

∂φ
+O(ǫ2) (16.334)

K = K̄ + ǫ
∂S1

∂ψ
+O(ǫ2) . (16.335)

Defining the dimensionless variable

λ ≡ k⊥
√

2J

mωc
, (16.336)

we obtain the result
(

mω2
c

2eV0k2
⊥

)
λ̄2 =

(
mω2

c

2eV0k2
⊥

)
λ2 − ǫ

∑

n

nJn(λ) cos(ψ + nφ)
ω
ωc
− n− k2

zK
mωc

+O(ǫ2) , (16.337)
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Figure 16.5: Plot of λ versus ψ for φ = 0 (Poincaré section) for ω = 30.11ωc Top panels are
nonresonant invariant curves calculated to first order. Bottom panels are exact numerical
dynamics, with x symbols marking the initial conditions. Left panels: weak amplitude
(no trapping). Right panels: stronger amplitude (shows trapping). From Lichtenberg and
Lieberman (1983).

where λ̄ = k⊥
√

2J̄/mωc.
14

We see that resonances occur whenever

ω

ωc
− k2

zK

mωc
= n , (16.338)

for any integer n. Let us consider the case kz = 0, in which the resonance condition is
ω = nωc. We then have

λ̄2

2α
=
λ2

2α
−
∑

n

nJn(λ) cos(ψ + nφ)
ω
ωc
− n , (16.339)

where

α =
E0

B
· ck⊥
ωc

(16.340)

14Note that the argument of Jn in eqn. 16.337 is λ and not λ̄. This arises because we are computing the
new action J̄ in terms of the old variables (φ, J) and (ψ,K).
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is a dimensionless measure of the strength of the perturbation, with E0 ≡ k⊥V0. In Fig.
16.5 we plot the level sets for the RHS of the above equation λ(ψ) for φ = 0, for two different
values of the dimensionless amplitude α, for ω/ωc = 30.11 (i.e. off resonance). Thus, when
the amplitude is small, the level sets are far from a primary resonance, and the analytical and
numerical results are very similar (left panels). When the amplitude is larger, resonances
may occur which are not found in the lowest order perturbation treatment. However, as
is apparent from the plots, the gross features of the phase diagram are reproduced by
perturbation theory. What is missing is the existence of ‘chaotic islands’ which initially
emerge in the vicinity of the trapping regions.

16.10 Adiabatic Invariants

Adiabatic perturbations are slow, smooth, time-dependent perturbations to a dynamical
system. A classic example: a pendulum with a slowly varying length l(t). Suppose λ(t)
is the adiabatic parameter. We write H = H

(
q, p;λ(t)

)
. All explicit time-dependence to

H comes through λ(t). Typically, a dimensionless parameter ǫ may be associated with the
perturbation:

ǫ =
1

ω0

∣∣∣∣
d lnλ

dt

∣∣∣∣ , (16.341)

where ω0 is the natural frequency of the system when λ is constant. We require ǫ≪ 1 for
adiabaticity. In adiabatic processes, the action variables are conserved to a high degree of
accuracy. These are the adiabatic invariants. For example, for the harmonix oscillator, the
action is J = E/ν. While E and ν may vary considerably during the adiabatic process,
their ratio is very nearly fixed. As a consequence, assuming small oscillations,

E = νJ = 1
2mgl θ

2
0 ⇒ θ0(l) ≈

2J

m
√
g l3/2

, (16.342)

so θ0(ℓ) ∝ l−3/4.

Suppose that for fixed λ the Hamiltonian is transformed to action-angle variables via the
generator S(q, J ;λ). The transformed Hamiltonian is

H̃(φ, J, t) = H(φ, J ;λ) +
∂S

∂λ

dλ

dt
, (16.343)

where

H(φ, J ;λ) = H
(
q(φ, J ;λ), p(φ, J ;λ);λ) . (16.344)

We assume n = 1 here. Hamilton’s equations are now

φ̇ = +
∂H̃

∂J
= ν(J ;λ) +

∂2S

∂λ∂J

dλ

dt
(16.345)

J̇ = −∂H̃
∂φ

= − ∂2S

∂λ∂φ

dλ

dt
. (16.346)
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Figure 16.6: A mechanical mirror.

The second of these may be Fourier decomposed as

J̇ = −iλ̇
∑

m

m
∂Sm(J ;λ)

∂λ
eimφ , (16.347)

hence

∆J = J(t = +∞)− J(t = −∞) = −i
∑

m

m

∞∫

−∞

dt
∂Sm(J ;λ)

∂λ

dλ

dt
eimφ . (16.348)

Since λ̇ is small, we have φ(t) = ν t + β, to lowest order. We must therefore evaluate
integrals such as

Im =

∞∫

−∞

dt
∂Sm(J ;λ)

∂λ

dλ

dt
eimνt . (16.349)

The term in curly brackets is a smooth, slowly varying function of t. Call it f(t). We
presume f(t) can be analytically continued off the real t axis, and that its closest singularity
in the complex t plane lies at t = ±iτ , in which case I behaves as exp(−|m|ντ). Consider,
for example, the Lorentzian,

f(t) =
C

1 + (t/τ)2
⇒

∞∫

−∞

dt f(t) eimνt = πτ e−|m|ντ , (16.350)

which is exponentially small in the time scale τ . Because of this, only m = ±1 need be
considered. What this tells us is that the change ∆J may be made arbitrarily small by a
sufficiently slowly varying λ(t).

16.10.1 Example: mechanical mirror

Consider a two-dimensional version of a mechanical mirror, depicted in fig. 16.6. A particle
bounces between two curves, y = ±D(x), where |D′(x)| << 1. The bounce time is τb⊥ =

2D/vy. We assume τ ≪ L/vx, where vx,y are the components of the particle’s velocity, and
L is the total length of the system. There are, therefore, many bounces, which means the
particle gets to sample the curvature in D(x).
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The adiabatic invariant is the action,

J =
1

2π

D∫

−D

dy mvy +
1

2π

−D∫

D

dym (−vy) =
2

π
mvyD(x) . (16.351)

Thus,

E = 1
2m
(
v2
x + v2

y) = 1
2mv

2
x +

π2J2

8mD2(x)
, (16.352)

or

v2
x =

2E

m
−
(

πJ

2mD(x)

)2

. (16.353)

The particle is reflected in the throat of the device at horizontal coordinate x∗, where

D(x∗) =
πJ√
8mE

. (16.354)

16.10.2 Example: magnetic mirror

Consider a particle of charge e moving in the presence of a uniform magnetic field B = Bẑ.
Recall the basic physics: velocity in the parallel direction vz is conserved, while in the plane
perpendicular to B the particle executes circular ‘cyclotron orbits’, satisfying

mv2
⊥
ρ

=
e

c
v⊥B ⇒ ρ =

mcv⊥
eB

, (16.355)

where ρ is the radial coordinate in the plane perpendicular to B. The period of the orbits
is T = 2πρ.v⊥ = 2πmc/eB, hence their frequency is the cyclotron frequency ωc = eB/mc.

Now assume that the magnetic field is spatially dependent. Note that a spatially varying
B-field cannot be unidirectional:

∇ ·B = ∇⊥ ·B⊥ +
∂Bz
∂z

= 0 . (16.356)

The non-collinear nature of B results in the drift of the cyclotron orbits. Nevertheless, if
the field B felt by the particle varies slowly on the time scale T = 2π/ωc, then the system
possesses an adiabatic invariant:

J =
1

2π

∮

C

p · dℓ =
1

2π

∮

C

(
mv + e

c A
)
· dℓ (16.357)

=
m

2π

∮

C

v · dℓ+
e

2πc

∮

int(C)

B · n̂ dΣ . (16.358)

The last two terms are of opposite sign, and one has

J = −m
2π
· ρeBz
mc

· 2πρ+
e

2πc
·Bz · πρ2 (16.359)

= −eBzρ
2

2c
= − e

2πc
· ΦB(C) = −m

2v2
⊥c

2eBz
, (16.360)
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Figure 16.7: B field lines in a magnetic bottle.

where ΦB(C) is the magnetic flux enclosed by C.

The energy is

E = 1
2mv

2
⊥ + 1

2mv
2
z , (16.361)

hence we have

vz =

√
2

m

(
E −MB

)
. (16.362)

where

M ≡ − e

mc
J =

e2

2πmc2
ΦB(C) (16.363)

is the magnetic moment . Note that vz vanishes when B = Bmax = E/M . When this limit
is reached, the particle turns around. This is a magnetic mirror . A pair of magnetic mirrors
may be used to confine charged particles in a magnetic bottle, depicted in fig. 16.7.

Let v‖,0, v⊥,0, and B‖,0 be the longitudinal particle velocity, transverse particle velocity,
and longitudinal component of the magnetic field, respectively, at the point of injection.
Our two conservation laws (J and E) guarantee

v2
‖(z) + v2

⊥(z) = v2
‖,0 + v2

⊥,0 (16.364)

v⊥(z)2

B‖(z)
=
v2
⊥,0
B‖,0

. (16.365)

This leads to reflection at a longitudinal coordinate z∗, where

B‖(z
∗) = B‖,0

√√√√1 +
v2
‖,0
v2
⊥,0

. (16.366)

The physics is quite similar to that of the mechanical mirror.
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16.10.3 Resonances

When n > 1, we have

J̇α = −iλ̇
∑

m

mα ∂Sm(J ;λ)

∂λ
eim·φ (16.367)

∆J = −i
∑

m

mα

∞∫

−∞

dt
∂Sm(J ;λ)

∂λ

dλ

dt
eim·νt eim·β . (16.368)

Therefore, when m · ν(J) = 0 we have a resonance, and the integral grows linearly with
time – a violation of the adiabatic invariance of Jα.

16.11 Appendix : Canonical Perturbation Theory

Consider the Hamiltonian

H =
p2

2m
+ 1

2mω2
0 q

2 + 1
3ǫmω2

0

q3

a
,

where ǫ is a small dimensionless parameter.

(a) Show that the oscillation frequency satisfies ν(J) = ω0 +O(ǫ2). That is, show that the
first order (in ǫ) frequency shift vanishes.

Solution: It is good to recall the basic formulae

q =

√
2J0

mω0
sinφ0 , p =

√
2mω0 J0 cosφ0 (16.369)

as well as the results

J0 =
∂S

∂φ0
= J + ǫ

∂S1

∂φ0
+ ǫ2

∂S2

∂φ0
+ . . . (16.370)

φ =
∂S

∂J
= φ0 + ǫ

∂S1

∂J
+ ǫ2

∂S2

∂J
+ . . . , (16.371)

and

E0(J) = H̃0(J) (16.372)

E1(J) = H̃1(φ0, J) +
∂H̃0

∂J

∂S1

∂φ0
(16.373)

E2(J) =
∂H̃0

∂J

∂S2

∂φ0
+

1

2

∂2H̃0

∂J2

(
∂S1

∂φ0

)2
+
∂H̃1

∂J

∂S1

∂φ0
. (16.374)
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Expressed in action-angle variables,

H̃0(φ0, J) = ω0 J (16.375)

H̃1(φ0, J) =
2

3

√
2ω0

ma2
J3/2 sin3φ0 . (16.376)

Thus, ν0 =
∂H̃0
∂J = ω0 .

Averaging the equation for E1(J) yields

E1(J) =
〈
H̃1(φ0, J)

〉
=

2

3

√
2ω0

ma2
J3/2

〈
sin3φ0

〉
= 0 . (16.377)

(b) Compute the frequency shift ν(J) to second order in ǫ.

Solution : From the equation for E1, we also obtain

∂S1

∂φ0
=

1

ν0

(〈
H̃1

〉
− H̃1

)
. (16.378)

Inserting this into the equation for E2(J) and averaging then yields

E2(J) =
1

ν0

〈
∂H̃1

∂J

(〈
H̃1

〉
− H̃1

)〉
= − 1

ν0

〈
H̃1

∂H̃1

∂J

〉
(16.379)

= −4ν0J
2

3ma2

〈
sin6φ0

〉
(16.380)

In computing the average of sin6φ0, it is good to recall the binomial theorem, or the Fi-
bonacci tree. The sixth order coefficents are easily found to be {1, 6, 15, 20, 15, 6, 1}, whence

sin6φ0 =
1

(2i)6
(
eiφ0 − e−iφ0

)6
(16.381)

= 1
64

(
− 2 sin 6φ0 + 12 sin 4φ0 − 30 sin 2φ0 + 20

)
. (16.382)

Thus, 〈
sin6φ0

〉
= 5

16 , (16.383)

whence

E(J) = ω0 J − 5
12ǫ

2 J2

ma2
(16.384)

and

ν(J) =
∂E

∂J
= ω0 − 5

6ǫ
2 J

ma2
. (16.385)

(c) Find q(t) to order ǫ. Your result should be finite for all times.

Solution : From the equation for E1(J), we have

∂S1

∂φ0
= −2

3

√
2J3

mω0a2
sin3φ0 . (16.386)
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Integrating, we obtain

S1(φ0, J) =
2

3

√
2J3

mω0a2

(
cosφ0 − 1

3 cos3φ0

)
(16.387)

=
J3/2

√
2mω0a2

(
cosφ0 − 1

9 cos 3φ0

)
. (16.388)

Thus, with
S(φ0, J) = φ0 J + ǫ S1(φ0, J) + . . . , (16.389)

we have

φ =
∂S

∂J
= φ0 +

3

2

ǫ J1/2

√
2mω0a2

(
cosφ0 − 1

9 cos 3φ0

)
(16.390)

J0 =
∂S

∂φ0
= J − ǫ J3/2

√
2mω0a2

(
sinφ0 − 1

3 sin 3φ0

)
. (16.391)

Inverting, we may write φ0 and J0 in terms of φ and J :

φ0 = φ+
3

2

ǫ J1/2

√
2mω0a2

(
1
9 cos 3φ− cosφ

)
(16.392)

J0 = J +
ǫ J3/2

√
2mω0a2

(
1
3 sin 3φ− sinφ

)
. (16.393)

Thus,

q(t) =

√
2J0

mω0
sinφ0 (16.394)

=

√
2J

mω0
sinφ ·

(
1 +

δJ

2J
+ . . .

)(
sinφ+ δφ cosφ+ . . .

)
(16.395)

=

√
2J

mω0
sinφ− ǫ J

mω0a

(
1 + 1

3 cos 2φ
)

+O
(
ǫ2
)
, (16.396)

with
φ(t) = φ(0) + ν(J) t . (16.397)
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17.1 F05 Physics 110A Midterm #1

[1] A particle of mass m moves in the one-dimensional potential

U(x) = U0

x2

a2
e−x/a . (17.1)

(a) Sketch U(x). Identify the location(s) of any local minima and/or maxima, and be sure
that your sketch shows the proper behavior as x→ ±∞.

(b) Sketch a representative set of phase curves. Identify and classify any and all fixed points.
Find the energy of each and every separatrix.

(c) Sketch all the phase curves for motions with total energy E = 2
5 U0. Do the same for

E = U0. (Recall that e = 2.71828 . . . .)

(d) Derive and expression for the period T of the motion when |x| ≪ a.

Solution:

(a) Clearly U(x) diverges to +∞ for x → −∞, and U(x) → 0 for x → +∞. Setting
U ′(x) = 0, we obtain the equation

U ′(x) =
U0

a2

(
2x− x2

a

)
e−x/a = 0 , (17.2)

with (finite x) solutions at x = 0 and x = 2a. Clearly x = 0 is a local minimum and x = 2a

a local maximum. Note U(0) = 0 and U(2a) = 4 e−2 U0 ≈ 0.541U0.

Figure 17.1: The potential U(x). Distances are here measured in units of a, and the
potential in units of U0.

(b) Local minima of a potential U(x) give rise to centers in the (x, v) plane, while local
maxima give rise to saddles. In Fig. 17.2 we sketch the phase curves. There is a center at
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Figure 17.2: Phase curves for the potential U(x). The red curves show phase curves for
E = 2

5 U0 (interior, disconnected red curves, |v| < 1) and E = U0 (outlying red curve). The
separatrix is the dark blue curve which forms a saddle at (x, v) = (2, 0), and corresponds
to an energy E = 4 e−2 U0.

(0, 0) and a saddle at (2a, 0). There is one separatrix, at energy E = U(2a) = 4 e−2 U0 ≈
0.541U0.

(c) Even without a calculator, it is easy to verify that 4 e−2 > 2
5 . One simple way is to

multiply both sides by 5
2 e

2 to obtain 10 > e2, which is true since e2 < (2.71828 . . .)2 < 10.

Thus, the energy E = 2
5 U0 lies below the local maximum value of U(2a), which means that

there are two phase curves with E = 2
5 U0.

It is also quite obvious that the second energy value given, E = U0, lies above U(2a), which
means that there is a single phase curve for this energy. One finds bound motions only for
x < 2 and 0 ≤ E < U(2a). The phase curves corresponding to total energy E = 2

5 U0 and

E = U0 are shown in Fig. 17.2.

(d) Expanding U(x) in a Taylor series about x = 0, we have

U(x) =
U0

a2

{
x2 − x3

a
+

x4

2a2
+ . . .

}
. (17.3)

The leading order term is sufficient for |x| ≪ a. The potential energy is then equivalent to
that of a spring, with spring constant k = 2U0/a

2. The period is

T = 2π

√
m

k
= 2π

√
ma2

2U0
. (17.4)
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[2] A forced, damped oscillator obeys the equation

ẍ+ 2β ẋ+ ω2
0 x = f0 cos(ω0t) . (17.5)

You may assume the oscillator is underdamped.

(a) Write down the most general solution of this differential equation.

(b) Your solution should involve two constants. Derive two equations relating these con-
stants to the initial position x(0) and the initial velocity ẋ(0). You do not have to solve
these equations.

(c) Suppose ω0 = 5.0 s−1, β = 4.0 s−1, and f0 = 8cm s−2. Suppose further you are told that
x(0) = 0 and x(T ) = 0, where T = π

6 s. Derive an expression for the initial velocity ẋ(0).

Solution: (a) The general solution with forcing f(t) = f0 cos(Ωt) is

x(t) = xh(t) +A(Ω) f0 cos
(
Ωt− δ(Ω)

)
, (17.6)

with

A(Ω) =
[
(ω2

0 −Ω2)2 + 4β2Ω2
]−1/2

, δ(Ω) = tan−1

(
2βΩ

ω2
0 −Ω2

)
(17.7)

and
xh(t) = C e−βt cos(νt) +D e−βt sin(νt) , (17.8)

with ν =
√
ω2

0 − β2.

In our case, Ω = ω0, in which case A = (2βω0)
−1 and δ = 1

2π. Thus, the most general
solution is

x(t) = C e−βt cos(νt) +D e−βt sin(νt) +
f0

2βω0
sin(ω0t) . (17.9)

(b) We determine the constants C and D by the boundary conditions on x(0) and ẋ(0):

x(0) = C , ẋ(0) = −βC + νD +
f0

2β
. (17.10)

Thus,

C = x(0) , D =
β

ν
x(0) +

1

ν
ẋ(0)− f0

2βν
. (17.11)

(c) From x(0) = 0 we obtain C = 0. The constant D is then determined by the condition
at time t = T = 1

6π.

Note that ν =
√
ω2

0 − β2 = 3.0 s−1. Thus, with T = 1
6π, we have νT = 1

2π, and

x(T ) = D e−βT +
f0

2βω0
sin(ω0T ) . (17.12)
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This determines D:

D = − f0

2βω0
eβT sin(ω0T ) . (17.13)

We now can write

ẋ(0) = νD +
f0

2β
(17.14)

=
f0

2β

(
1− ν

ω0
eβT sin(ω0T )

)
(17.15)

=
(
1− 3

10 e
2π/3

)
cm/s . (17.16)

Numerically, the value is ẋ(0) ≈ 0.145 cm/s .
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17.2 F05 Physics 110A Midterm #2

[1] Two blocks connected by a spring of spring constant k are free to slide frictionlessly
along a horizontal surface, as shown in Fig. 17.3. The unstretched length of the spring is a.

Figure 17.3: Two masses connected by a spring sliding horizontally along a frictionless
surface.

(a) Identify a set of generalized coordinates and write the Lagrangian.
[15 points]

Solution : As generalized coordinates I choose X and u, where X is the position of the
right edge of the block of mass M , and X + u + a is the position of the left edge of the
block of mass m, where a is the unstretched length of the spring. Thus, the extension of
the spring is u. The Lagrangian is then

L = 1
2MẊ2 + 1

2m(Ẋ + u̇)2 − 1
2ku

2

= 1
2(M +m)Ẋ2 + 1

2mu̇
2 +mẊu̇− 1

2ku
2 . (17.17)

(b) Find the equations of motion.
[15 points]

Solution : The canonical momenta are

pX ≡
∂L

∂Ẋ
= (M +m)Ẋ +mu̇ , pu ≡

∂L

∂u̇
= m(Ẋ + u̇) . (17.18)

The corresponding equations of motion are then

ṗX = FX =
∂L

∂X
⇒ (M +m)Ẍ +mü = 0 (17.19)

ṗu = Fu =
∂L

∂u
⇒ m(Ẍ + ü) = −ku . (17.20)

(c) Find all conserved quantities.
[10 points]

Solution : There are two conserved quantities. One is pX itself, as is evident from the
fact that L is cyclic in X. This is the conserved ‘charge’ Λ associated with the continuous
symmetry X → X + ζ. i.e. Λ = pX . The other conserved quantity is the Hamiltonian H,
since L is cyclic in t. Furthermore, because the kinetic energy is homogeneous of degree
two in the generalized velocities, we have that H = E, with

E = T + U = 1
2(M +m)Ẋ2 + 1

2mu̇
2 +mẊu̇+ 1

2ku
2 . (17.21)
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It is possible to eliminate Ẋ, using the conservation of Λ:

Ẋ =
Λ−mu̇
M +m

. (17.22)

This allows us to write

E =
Λ2

2(M +m)
+

Mmu̇2

2(M +m)
+ 1

2ku
2 . (17.23)

(d) Find a complete solution to the equations of motion. As there are two degrees of
freedom, your solution should involve 4 constants of integration. You need not match initial
conditions, and you need not choose the quantities in part (c) to be among the constants.
[10 points]

Solution : Using conservation of Λ, we may write Ẍ in terms of ẍ, in which case

Mm

M +m
ü = −ku ⇒ u(t) = A cos(Ωt) +B sin(Ωt) , (17.24)

where

Ω =

√
(M +m)k

Mm
. (17.25)

For the X motion, we integrate eqn. 17.22 above, obtaining

X(t) = X0 +
Λt

M +m
− m

M +m

(
A cos(Ωt)−A+B sin(Ωt)

)
. (17.26)

There are thus four constants: X0, Λ, A, and B. Note that conservation of energy says

E =
Λ2

2(M +m)
+ 1

2k(A
2 +B2) . (17.27)

Alternate solution : We could choose X as the position of the left block and x as the
position of the right block. In this case,

L = 1
2MẊ2 + 1

2mẋ
2 − 1

2k(x−X − b)2 . (17.28)

Here, b includes the unstretched length a of the spring, but may also include the size of
the blocks if, say, X and x are measured relative to the blocks’ midpoints. The canonical
momenta are

pX =
∂L

∂Ẋ
= MẊ , px =

∂L

∂ẋ
= mẋ . (17.29)

The equations of motion are then

ṗX = FX =
∂L

∂X
⇒ MẌ = k(x−X − b) (17.30)

ṗx = Fx =
∂L

∂x
⇒ mẍ = −k(x−X − b) . (17.31)
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The one-parameter family which leaves L invariant is X → X + ζ and x → x + ζ, i.e.

simultaneous and identical displacement of both of the generalized coordinates. Then

Λ = MẊ +mẋ , (17.32)

which is simply the x-component of the total momentum. Again, the energy is conserved:

E = 1
2MẊ2 + 1

2mẋ
2 + 1

2k (x−X − b)2 . (17.33)

We can combine the equations of motion to yield

Mm
d2

dt2
(
x−X − b

)
= −k (M +m)

(
x−X − b

)
, (17.34)

which yields
x(t)−X(t) = b+A cos(Ωt) +B sin(Ωt) , (17.35)

From the conservation of Λ, we have

MX(t) +mx(t) = Λt+C , (17.36)

were C is another constant. Thus, we have the motion of the system in terms of four
constants: A, B, Λ, and C:

X(t) = − m
M+m

(
b+A cos(Ωt) +B sin(Ωt)

)
+

Λt+ C

M +m
(17.37)

x(t) = M
M+m

(
b+A cos(Ωt) +B sin(Ωt)

)
+

Λt+ C

M +m
. (17.38)
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[2] A uniformly dense ladder of mass m and length 2ℓ leans against a block of mass M ,
as shown in Fig. 17.4. Choose as generalized coordinates the horizontal position X of the
right end of the block, the angle θ the ladder makes with respect to the floor, and the
coordinates (x, y) of the ladder’s center-of-mass. These four generalized coordinates are not
all independent, but instead are related by a certain set of constraints.

Recall that the kinetic energy of the ladder can be written as a sum TCM + Trot, where

TCM = 1
2m(ẋ2 + ẏ2) is the kinetic energy of the center-of-mass motion, and Trot = 1

2Iθ̇
2,

where I is the moment of inertial. For a uniformly dense ladder of length 2ℓ, I = 1
3mℓ

2.

Figure 17.4: A ladder of length 2ℓ leaning against a massive block. All surfaces are fric-
tionless..

(a) Write down the Lagrangian for this system in terms of the coordinates X, θ, x, y, and
their time derivatives.
[10 points]

Solution : We have L = T − U , hence

L = 1
2MẊ2 + 1

2m(ẋ2 + ẏ2) + 1
2Iθ̇

2 −mgy . (17.39)

(b) Write down all the equations of constraint.
[10 points]

Solution : There are two constraints, corresponding to contact between the ladder and the
block, and contact between the ladder and the horizontal surface:

G1(X, θ, x, y) = x− ℓ cos θ −X = 0 (17.40)

G2(X, θ, x, y) = y − ℓ sin θ = 0 . (17.41)

(c) Write down all the equations of motion.
[10 points]

Solution : Two Lagrange multipliers, λ1 and λ2, are introduced to effect the constraints.

We have for each generalized coordinate qσ,

d

dt

(
∂L

∂q̇σ

)
− ∂L

∂qσ
=

k∑

j=1

λj
∂Gj
∂qσ

≡ Qσ , (17.42)
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where there are k = 2 constraints. We therefore have

MẌ = −λ1 (17.43)

mẍ = +λ1 (17.44)

mÿ = −mg + λ2 (17.45)

Iθ̈ = ℓ sin θ λ1 − ℓ cos θ λ2 . (17.46)

These four equations of motion are supplemented by the two constraint equations, yielding
six equations in the six unknowns {X, θ, x, y, λ1, λ2}.

(d) Find all conserved quantities.
[10 points]

Solution : The Lagrangian and all the constraints are invariant under the transformation

X → X + ζ , x→ x+ ζ , y → y , θ → θ . (17.47)

The associated conserved ‘charge’ is

Λ =
∂L

∂q̇σ

∂q̃σ
∂ζ

∣∣∣∣
ζ=0

= MẊ +mẋ . (17.48)

Using the first constraint to eliminate x in terms of X and θ, we may write this as

Λ = (M +m)Ẋ −mℓ sin θ θ̇ . (17.49)

The second conserved quantity is the total energy E. This follows because the Lagrangian
and all the constraints are independent of t, and because the kinetic energy is homogeneous
of degree two in the generalized velocities. Thus,

E = 1
2MẊ2 + 1

2m(ẋ2 + ẏ2) + 1
2Iθ̇

2 +mgy (17.50)

=
Λ2

2(M +m)
+ 1

2

(
I +mℓ2 − m

M+m mℓ2 sin2 θ
)
θ̇2 +mgℓ sin θ , (17.51)

where the second line is obtained by using the constraint equations to eliminate x and y in
terms of X and θ.

(e) What is the condition that the ladder detaches from the block? You do not have to solve
for the angle of detachment! Express the detachment condition in terms of any quantities
you find convenient.
[10 points]

Solution : The condition for detachment from the block is simply λ1 = 0, i.e. the normal
force vanishes.

Further analysis : It is instructive to work this out in detail (though this level of analysis
was not required for the exam). If we eliminate x and y in terms of X and θ, we find

x = X + ℓ cos θ y = ℓ sin θ (17.52)

ẋ = Ẋ − ℓ sin θ θ̇ ẏ = ℓ cos θ θ̇ (17.53)

ẍ = Ẍ − ℓ sin θ θ̈ − ℓ cos θ θ̇2 ÿ = ℓ cos θ θ̈ − ℓ sin θ θ̇2 . (17.54)
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Figure 17.5: Plot of θ∗ versus θ0 for the ladder-block problem (eqn. 17.64). Allowed
solutions, shown in blue, have α ≥ 1, and thus θ∗ ≤ θ0. Unphysical solutions, with α < 1,
are shown in magenta. The line θ∗ = θ0 is shown in red.

We can now write

λ1 = mẍ = mẌ −mℓ sin θ θ̈ −mℓ cos θ θ̇2 = −MẌ , (17.55)

which gives

(M +m)Ẍ = mℓ
(
sin θ θ̈ + cos θ θ̇2

)
, (17.56)

and hence

Qx = λ1 = − Mm

m+m
ℓ
(
sin θ θ̈ + cos θ θ̇2

)
. (17.57)

We also have

Qy = λ2 = mg +mÿ

= mg +mℓ
(
cos θ θ̈ − sin θ θ̇2

)
. (17.58)

We now need an equation relating θ̈ and θ̇. This comes from the last of the equations of
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motion:

Iθ̈ = ℓ sin θ λ1 − ℓ cos θλ2

= − Mm
M+m ℓ2

(
sin2θ θ̈ + sin θ cos θ θ̇2

)
−mgℓ cos θ −mℓ2

(
cos2θ θ̈ − sin θ cos θ θ̇2

)

= −mgℓ cos θ −mℓ2
(
1− m

M+m sin2θ
)
θ̈ + m

M+m mℓ2 sin θ cos θ θ̇2 . (17.59)

Collecting terms proportional to θ̈, we obtain

(
I +mℓ2 − m

M+m sin2θ
)
θ̈ = m

M+m mℓ2 sin θ cos θ θ̇2 −mgℓ cos θ . (17.60)

We are now ready to demand Qx = λ1 = 0, which entails

θ̈ = −cos θ

sin θ
θ̇2 . (17.61)

Substituting this into eqn. 17.60, we obtain

(
I +mℓ2

)
θ̇2 = mgℓ sin θ . (17.62)

Finally, we substitute this into eqn. 17.51 to obtain an equation for the detachment angle,
θ∗

E − Λ2

2(M +m)
=

(
3− m

M +m
· mℓ2

I +mℓ2
sin2θ∗

)
· 1

2mgℓ sin θ∗ . (17.63)

If our initial conditions are that the system starts from rest1 with an angle of inclination
θ0, then the detachment condition becomes

sin θ0 = 3
2 sin θ∗ − 1

2

(
m

M+m

)(
mℓ2

I+mℓ2

)
sin3θ∗

= 3
2 sin θ∗ − 1

2 α
−1 sin3θ∗ , (17.64)

where

α ≡
(

1 +
M

m

)(
1 +

I

mℓ2

)
. (17.65)

Note that α ≥ 1, and that when M/m = ∞2, we recover θ∗ = sin−1
(

2
3 sin θ0

)
. For finite

α, the ladder detaches at a larger value of θ∗. A sketch of θ∗ versus θ0 is provided in Fig.
17.5. Note that, provided α ≥ 1, detachment always occurs for some unique value θ∗ for
each θ0.

1‘Rest’ means that the initial velocities are Ẋ = 0 and θ̇ = 0, and hence Λ = 0 as well.
2I must satisfy I ≤ mℓ2.
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17.3 F05 Physics 110A Final Exam

[1] Two blocks and three springs are configured as in Fig. 17.6. All motion is horizontal.
When the blocks are at rest, all springs are unstretched.

Figure 17.6: A system of masses and springs.

(a) Choose as generalized coordinates the displacement of each block from its equilibrium
position, and write the Lagrangian.
[5 points]

(b) Find the T and V matrices.
[5 points]

(c) Suppose

m1 = 2m , m2 = m , k1 = 4k , k2 = k , k3 = 2k ,

Find the frequencies of small oscillations.
[5 points]

(d) Find the normal modes of oscillation.
[5 points]

(e) At time t = 0, mass #1 is displaced by a distance b relative to its equilibrium position.

I.e. x1(0) = b. The other initial conditions are x2(0) = 0, ẋ1(0) = 0, and ẋ2(0) = 0.

Find t∗, the next time at which x2 vanishes.
[5 points]

Solution

(a) The Lagrangian is

L = 1
2m1 x

2
1 + 1

2m2 x
2
2 − 1

2k1 x
2
1 − 1

2k2 (x2 − x1)
2 − 1

2k3 x
2
2

(b) The T and V matrices are

Tij =
∂2T

∂ẋi ∂ẋj
=

(
m1 0

0 m2

)
, Vij =

∂2U

∂xi ∂xj
=

(
k1 + k2 −k2

−k2 k2 + k3

)
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(c) We have m1 = 2m, m2 = m, k1 = 4k, k2 = k, and k3 = 2k. Let us write ω2 ≡ λω2
0 ,

where ω0 ≡
√
k/m. Then

ω2T−V = k

(
2λ− 5 1

1 λ− 3

)
.

The determinant is

det (ω2T−V) = (2λ2 − 11λ + 14) k2

= (2λ− 7) (λ − 2) k2 .

There are two roots: λ− = 2 and λ+ = 7
2 , corresponding to the eigenfrequencies

ω− =

√
2k

m
, ω+ =

√
7k

2m

(d) The normal modes are determined from (ω2
aT−V) ~ψ(a) = 0. Plugging in λ = 2 we have

for the normal mode ~ψ(−)

(
−1 1
1 −1

)(
ψ(−)

1

ψ(−)

2

)
= 0 ⇒ ~ψ(−) = C−

(
1
1

)

Plugging in λ = 7
2 we have for the normal mode ~ψ(+)

(
2 1
1 1

2

)(
ψ(+)

1

ψ(+)

2

)
= 0 ⇒ ~ψ(+) = C+

(
1
−2

)

The standard normalization ψ
(a)
i Tij ψ

(b)
j = δab gives

C− =
1√
3m

, C2 =
1√
6m

. (17.66)

(e) The general solution is
(
x1

x2

)
= A

(
1
1

)
cos(ω−t) +B

(
1
−2

)
cos(ω+t) + C

(
1
1

)
sin(ω−t) +D

(
1
−2

)
sin(ω+t) .

The initial conditions x1(0) = b, x2(0) = ẋ1(0) = ẋ2(0) = 0 yield

A = 2
3b , B = 1

3b , C = 0 , D = 0 .

Thus,

x1(t) = 1
3b ·

(
2 cos(ω−t) + cos(ω+t)

)

x2(t) = 2
3b ·

(
cos(ω−t)− cos(ω+t)

)
.
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Setting x2(t
∗) = 0, we find

cos(ω−t
∗) = cos(ω+t

∗) ⇒ π − ω−t = ω+t− π ⇒ t∗ =
2π

ω− + ω+

[2] Two point particles of masses m1 and m2 interact via the central potential

U(r) = U0 ln

(
r2

r2 + b2

)
,

where b is a constant with dimensions of length.

(a) For what values of the relative angular momentum ℓ does a circular orbit exist? Find

the radius r0 of the circular orbit. Is it stable or unstable?
[7 points]

(c) For the case where a circular orbit exists, sketch the phase curves for the radial motion
in the (r, ṙ) half-plane. Identify the energy ranges for bound and unbound orbits.
[5 points]

(c) Suppose the orbit is nearly circular, with r = r0+η, where |η| ≪ r0. Find the equation
for the shape η(φ) of the perturbation.
[8 points]

(d) What is the angle ∆φ through which periapsis changes each cycle? For which value(s)
of ℓ does the perturbed orbit not precess?
[5 points]
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Solution

(a) The effective potential is

Ueff(r) =
ℓ2

2µr2
+ U(r)

=
ℓ2

2µr2
+ U0 ln

(
r2

r2 + b2

)
.

where µ = m1m2/(m1 + m1) is the reduced mass. For a circular orbit, we must have
U ′

eff(r) = 0, or
l2

µr3
= U ′(r) =

2rU0b
2

r2 (r2 + b2)
.

The solution is

r20 =
b2ℓ2

2µb2U0 − ℓ2

Since r20 > 0, the condition on ℓ is

ℓ < ℓc ≡
√

2µb2U0

For large r, we have

Ueff(r) =

(
ℓ2

2µ
− U0 b

2

)
· 1

r2
+O(r−4) .

Thus, for ℓ < ℓc the effective potential is negative for sufficiently large values of r. Thus,
over the range ℓ < ℓc, we must have Ueff,min < 0, which must be a global minimum, since

Ueff(0+) =∞ and Ueff(∞) = 0. Therefore, the circular orbit is stable whenever it exists.

(b) Let ℓ = ǫ ℓc. The effective potential is then

Ueff(r) = U0 f(r/b) ,

where the dimensionless effective potential is

f(s) =
ǫ2

s2
− ln(1 + s−2) .

The phase curves are plotted in Fig. 17.7.

(c) The energy is

E = 1
2µṙ

2 + Ueff(r)

=
ℓ2

2µr4

(
dr

dφ

)2
+ Ueff(r) ,



17.3. F05 PHYSICS 110A FINAL EXAM 401

Figure 17.7: Phase curves for the scaled effective potential f(s) = ǫ s−2 − ln(1 + s−2), with
ǫ = 1√

2
. Here, ǫ = ℓ/ℓc. The dimensionless time variable is τ = t ·

√
U0/mb2.

where we’ve used ṙ = φ̇ r′ along with ℓ = µr2φ̇. Writing r = r0 + η and differentiating E
with respect to φ, we find

η′′ = −β2η , β2 =
µr40
ℓ2

U ′′
eff(r0) .

For our potential, we have

β2 = 2− ℓ2

µb2U0
= 2

(
1− ℓ2

ℓ2c

)

The solution is

η(φ) = A cos(βφ+ δ) (17.67)

where A and δ are constants.

(d) The change of periapsis per cycle is

∆φ = 2π
(
β−1 − 1

)
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If β > 1 then ∆φ < 0 and periapsis advances each cycle (i.e.it comes sooner with every
cycle). If β < 1 then ∆φ > 0 and periapsis recedes. For β = 1, which means ℓ =

√
µb2U0,

there is no precession and ∆φ = 0.

[3] A particle of charge e moves in three dimensions in the presence of a uniform magnetic

field B = B0 ẑ and a uniform electric field E = E0 x̂. The potential energy is

U(r, ṙ) = −eE0 x−
e

c
B0 x ẏ ,

where we have chosen the gauge A = B0 x ŷ.

(a) Find the canonical momenta px, py, and pz.
[7 points]

(b) Identify all conserved quantities.
[8 points]

(c) Find a complete, general solution for the motion of the system
{
x(t), y(t), x(t)

}
.

[10 points]

Solution

(a) The Lagrangian is

L = 1
2m(ẋ2 + ẏ2 + ż2) +

e

c
B0 x ẏ + eE0 x .

The canonical momenta are

px =
∂L

∂ẋ
= mẋ

py =
∂L

∂ẏ
= mẏ +

e

c
B0 x

px =
∂L

∂ż
= mż

(b) There are three conserved quantities. First is the momentum py, since Fy = ∂L
∂y = 0.

Second is the momentum pz, since Fy = ∂L
∂z = 0. The third conserved quantity is the

Hamiltonian, since ∂L
∂t = 0. We have

H = px ẋ+ py ẏ + pz ż − L

⇒ H = 1
2m(ẋ2 + ẏ2 + ż2)− eE0 x
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(c) The equations of motion are

ẍ− ωc ẏ =
e

m
E0

ÿ + ωc ẋ = 0

z̈ = 0 .

The second equation can be integrated once to yield ẏ = ωc(x0−x), where x0 is a constant.
Substituting this into the first equation gives

ẍ+ ω2
c x = ω2

c x0 +
e

m
E0 .

This is the equation of a constantly forced harmonic oscillator. We can therefore write the
general solution as

x(t) = x0 +
eE0

mω2
c

+A cos
(
ωct+ δ

)

y(t) = y0 −
eE0

mωc
t−A sin

(
ωct+ δ

)

z(t) = z0 + ż0 t

Note that there are six constants,
{
A, δ, x0, y0, z0, ż0

}
, are are required for the general

solution of three coupled second order ODEs.

[4] An N = 1 dynamical system obeys the equation

du

dt
= ru+ 2bu2 − u3 ,

where r is a control parameter, and where b > 0 is a constant.

(a) Find and classify all bifurcations for this system.
[7 points]

(b) Sketch the fixed points u∗ versus r.
[6 points]

Now let b = 3. At time t = 0, the initial value of u is u(0) = 1. The control parameter
r is then increased very slowly from r = −20 to r = +20, and then decreased very
slowly back down to r = −20.

(c) What is the value of u when r = −5 on the increasing part of the cycle?
[3 points]
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(d) What is the value of u when r = +16 on the increasing part of the cycle?
[3 points]

(e) What is the value of u when r = +16 on the decreasing part of the cycle?
[3 points]

(f) What is the value of u when r = −5 on the decreasing part of the cycle?
[3 points]

Solution

(a) Setting u̇ = 0 we obtain
(u2 − 2bu− r)u = 0 .

The roots are
u = 0 , u = b±

√
b2 + r .

The roots at u = u± = b ±
√
b2 + r are only present when r > −b2. At r = −b2 there

is a saddle-node bifurcation. The fixed point u = u− crosses the fixed point at u = 0 at
r = 0, at which the two fixed points exchange stability. This corresponds to a transcritical

bifurcation. In Fig. 17.8 we plot u̇/b3 versus u/b for several representative values of r/b2.
Note that, defining ũ = u/b, r̃ = r/b2, and t̃ = b2t that our N = 1 system may be written

dũ

dt̃
=
(
r̃ + 2ũ− ũ2

)
ũ ,

which shows that it is only the dimensionless combination r̃ = r/b2 which enters into the
location and classification of the bifurcations.

(b) A sketch of the fixed points u∗ versus r is shown in Fig. 17.9. Note the two bifurcations
at r = −b2 (saddle-node) and r = 0 (transcritical).

(c) For r = −20 < −b2 = −9, the initial condition u(0) = 1 flows directly toward the stable
fixed point at u = 0. Since the approach to the FP is asymptotic, u remains slightly positive
even after a long time. When r = −5, the FP at u = 0 is still stable. Answer: u = 0.

(d) As soon as r becomes positive, the FP at u∗ = 0 becomes unstable, and u flows to the

upper branch u+. When r = 16, we have u = 3 +
√

32 + 16 = 8. Answer: u = 8.

(e) Coming back down from larger r, the upper FP branch remains stable, thus, u = 8 at
r = 16 on the way down as well. Answer: u = 8.

(f) Now when r first becomes negative on the way down, the upper branch u+ remains
stable. Indeed it remains stable all the way down to r = −b2, the location of the saddle-
node bifurcation, at which point the solution u = u+ simply vanishes and the flow is toward
u = 0 again. Thus, for r = −5 on the way down, the system remains on the upper branch,
in which case u = 3 +

√
32 − 5 = 5. Answer: u = 5.
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Figure 17.8: Plot of dimensionless ‘velocity’ u̇/b3 versus dimensionless ‘coordinate’ u/b for
several values of the dimensionless control parameter r̃ = r/b2.

17.4 F07 Physics 110A Midterm #1

[1] A particle of mass m moves in the one-dimensional potential

U(x) =
U0

a4

(
x2 − a2

)2
. (17.68)

(a) Sketch U(x). Identify the location(s) of any local minima and/or maxima, and be sure
that your sketch shows the proper behavior as x→ ±∞.
[15 points]

Solution : Clearly the minima lie at x = ±a and there is a local maximum at x = 0.

(b) Sketch a representative set of phase curves. Be sure to sketch any separatrices which
exist, and identify their energies. Also sketch all the phase curves for motions with total
energy E = 1

2 U0. Do the same for E = 2U0.
[15 points]

Solution : See Fig. 17.10 for the phase curves. Clearly U(±a) = 0 is the minimum of the
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Figure 17.9: Fixed points and their stability versus control parameter for the N = 1 system
u̇ = ru+ 2bu2 − u3. Solid lines indicate stable fixed points; dashed lines indicate unstable
fixed points. There is a saddle-node bifurcation at r = −b2 and a transcritical bifurcation
at r = 0. The hysteresis loop in the upper half plane u > 0 is shown. For u < 0 variations
of the control parameter r are reversible and there is no hysteresis.

potential, and U(0) = U0 is the local maximum and the energy of the separatrix. Thus,

E = 1
2 U0 cuts through the potential in both wells, and the phase curves at this energy form

two disjoint sets. For E < U0 there are four turning points, at

x1,< = −a
√

1 +

√
E

U0
, x1,> = −a

√

1−
√
E

U0

and

x2,< = a

√

1−
√
E

U0
, x2,> = a

√

1 +

√
E

U0

For E = 2U0, the energy is above that of the separatrix, and there are only two turning

points, x1,< and x2,>. The phase curve is then connected.
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Figure 17.10: Sketch of the double well potential U(x) = (U0/a
4)(x2 − a2)2, here with

distances in units of a, and associated phase curves. The separatrix is the phase curve
which runs through the origin. Shown in red is the phase curve for U = 1

2 U0, consisting
of two deformed ellipses. For U = 2U0, the phase curve is connected, lying outside the
separatrix.

(c) The phase space dynamics are written as ϕ̇ = V (ϕ), where ϕ =

(
x
ẋ

)
. Find the upper

and lower components of the vector field V .
[10 points]

Solution :
d

dt

(
x
ẋ

)
=

(
ẋ

− 1
m U ′(x)

)
=

(
ẋ

−4U0
a2

x (x2 − a2)

)
. (17.69)

(d) Derive and expression for the period T of the motion when the system exhibits small
oscillations about a potential minimum.
[10 points]
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Solution : Set x = ±a+ η and Taylor expand:

U(±a+ η) =
4U0

a2
η2 +O(η3) . (17.70)

Equating this with 1
2k η

2, we have the effective spring constant k = 8U0/a
2, and the small

oscillation frequency

ω0 =

√
k

m
=

√
8U0

ma2
. (17.71)

The period is 2π/ω0.

[2] An R-L-C circuit is shown in fig. 17.11. The resistive element is a light bulb. The
inductance is L = 400µH; the capacitance is C = 1µF; the resistance is R = 32Ω. The
voltage V (t) oscillates sinusoidally, with V (t) = V0 cos(ωt), where V0 = 4V. In this problem,
you may neglect all transients; we are interested in the late time, steady state operation of
this circuit. Recall the relevant MKS units:

1Ω = 1V · s /C , 1F = 1C /V , 1H = 1V · s2/C .

Figure 17.11: An R-L-C circuit in which the resistive element is a light bulb.

(a) Is this circuit underdamped or overdamped?
[10 points]

Solution : We have

ω0 = (LC)−1/2 = 5× 104 s−1 , β =
R

2L
= 4× 104 s−1 .

Thus, ω2
0 > β2 and the circuit is underdamped .
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(b) Suppose the bulb will only emit light when the average power dissipated by the bulb is

greater than a threshold Pth = 2
9 W . For fixed V0 = 4V, find the frequency range for ω over

which the bulb emits light. Recall that the instantaneous power dissipated by a resistor is
PR(t) = I2(t)R. (Average this over a cycle to get the average power dissipated.)
[20 points]

Solution : The charge on the capacitor plate obeys the ODE

L Q̈+R Q̇+
Q

C
= V (t) .

The solution is

Q(t) = Qhom(t) +A(ω)
V0

L
cos
(
ωt− δ(ω)

)
,

with

A(ω) =
[
(ω2

0 − ω2)2 + 4β2ω2
]−1/2

, δ(ω) = tan−1

(
2βω

ω2
0 − ω2

)
.

Thus, ignoring the transients, the power dissipated by the bulb is

PR(t) = Q̇2(t)R

= ω2A2(ω)
V 2

0 R

L2
sin2

(
ωt− δ(ω)

)
.

Averaging over a period, we have 〈 sin2(ωt− δ) 〉 = 1
2 , so

〈PR 〉 = ω2A2(ω)
V 2

0 R

2L2
=
V 2

0

2R
· 4β2ω2

(ω2
0 − ω2)2 + 4β2ω2

.

Now V 2
0 /2R = 1

4 W. So Pth = αV 2
0 /2R, with α = 8

9 . We then set 〈PR〉 = Pth, whence

(1− α) · 4β2ω2 = α (ω2
0 − ω2)2 .

The solutions are

ω = ±
√

1− α
α

β +

√(
1− α
α

)
β2 + ω2

0 =
(
3
√

3±
√

2
)
× 1000 s−1 .

(c) Compare the expressions for the instantaneous power dissipated by the voltage source,

PV (t), and the power dissipated by the resistor PR(t) = I2(t)R. If PV (t) 6= PR(t), where

does the power extra power go or come from? What can you say about the averages of PV
and PR(t) over a cycle? Explain your answer.
[20 points]

Solution : The instantaneous power dissipated by the voltage source is

PV (t) = V (t) I(t) = −ωA V0

L
sin(ωt− δ) cos(ωt)

= ωA
V0

2L

(
sin δ − sin(2ωt − δ)

)
.
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As we have seen, the power dissipated by the bulb is

PR(t) = ω2A2 V
2
0 R

L2
sin2(ωt− δ) .

These two quantities are not identical, but they do have identical time averages over one
cycle:

〈PV (t) 〉 = 〈PR(t) 〉 =
V 2

0

2R
· 4β2 ω2A2(ω) .

Energy conservation means
PV (t) = PR(t) + Ė(t) ,

where

E(t) =
LQ̇2

2
+
Q2

2C

is the energy in the inductor and capacitor. Since Q(t) is periodic, the average of Ė over a

cycle must vanish, which guarantees 〈PV (t) 〉 = 〈PR(t) 〉.

What was not asked:

(d) What is the maximum charge Qmax on the capacitor plate if ω = 3000 s−1?
[10 points]

Solution : Kirchoff’s law gives for this circuit the equation

Q̈+ 2β Q̇+ ω2
0 Q =

V0

L
cos(ωt) ,

with the solution

Q(t) = Qhom(t) +A(ω)
V0

L
cos
(
ωt− δ(ω)

)
,

where Qhom(t) is the homogeneous solution, i.e. the transient which we ignore, and

A(ω) =
[
(ω2

0 − ω2)2 + 4β2ω2
]−1/2

, δ(ω) = tan−1

(
2βω

ω2
0 − ω2

)
.

Then

Qmax = A(ω)
V0

L
.

Plugging in ω = 3000 s−1, we have

A(ω) =
[
(52 − 42)2 + 4 · 42 · 32

]−1/2 × 10−3 s2 =
1

8
√

13
× 10−3 s2 .

Since V0/L = 104 C/s2, we have

Qmax =
5

4
√

13
Coul .
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17.5 F07 Physics 110A Midterm #2

[1] A point mass m slides frictionlessly, under the influence of gravity, along a massive ring
of radius a and mass M . The ring is affixed by horizontal springs to two fixed vertical
surfaces, as depicted in fig. 17.12. All motion is within the plane of the figure.

Figure 17.12: A point mass m slides frictionlessly along a massive ring of radius a and mass
M , which is affixed by horizontal springs to two fixed vertical surfaces.

(a) Choose as generalized coordinates the horizontal displacement X of the center of the
ring with respect to equilibrium, and the angle θ a radius to the mass m makes with respect
to the vertical (see fig. 17.12). You may assume that at X = 0 the springs are both
unstretched. Find the Lagrangian L(X, θ, Ẋ, θ̇, t).
[15 points]

The coordinates of the mass point are

x = X + a sin θ , y = −a cos θ .

The kinetic energy is

T = 1
2MẊ2 + 1

2m
(
Ẋ + a cos θ θ̇

)2
+ 1

2ma
2 sin2θ θ̇2

= 1
2 (M +m)Ẋ2 + 1

2ma
2θ̇2 +ma cos θ Ẋ θ̇ .

The potential energy is
U = kX2 −mga cos θ .

Thus, the Lagrangian is

L = 1
2 (M +m)Ẋ2 + 1

2ma
2θ̇2 +ma cos θ Ẋ − kX2 +mga cos θ .

(b) Find the generalized momenta pX and pθ, and the generalized forces FX and Fθ
[10 points]

We have

pX =
∂L

∂Ẋ
= (M +m)Ẋ +ma cos θ θ̇ , pθ =

∂L

∂θ̇
= ma2θ̇ +ma cos θ Ẋ .
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For the forces,

FX =
∂L

∂X
= −2kX , Fθ =

∂L

∂θ
= −ma sin θ Ẋ θ̇ −mga sin θ .

(c) Derive the equations of motion.
[15 points]

The equations of motion are
d

dt

(
∂L

∂q̇σ

)
=

∂L

∂qσ
,

for each generalized coordinate qσ. For X we have

(M +m)Ẍ +ma cos θ θ̈ −ma sin θ θ̇2 = −2kX .

For θ,
ma2 θ̈ +ma cos θẌ = −mga sin θ .

(d) Find expressions for all conserved quantities.
[10 points]

Horizontal and vertical translational symmetries are broken by the springs and by gravity,
respectively. The remaining symmetry is that of time translation. From dH

dt = −∂L
∂t , we have

that H =
∑

σ pσ q̇σ−L is conserved. For this problem, the kinetic energy is a homogeneous
function of degree 2 in the generalized velocities, and the potential is velocity-independent.
Thus,

H = T + U = 1
2(M +m)Ẋ2 + 1

2ma
2θ̇2 +ma cos θ Ẋ θ̇ + kX2 −mga cos θ .
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[2] A point particle of mass m moves in three dimensions in a helical potential

U(ρ, φ, z) = U0 ρ cos

(
φ− 2πz

b

)
.

We call b the pitch of the helix.

(a) Write down the Lagrangian, choosing (ρ, φ, z) as generalized coordinates.
[10 points]

The Lagrangian is

L = 1
2m
(
ρ̇2 + ρ2φ̇2 + ż2

)
− U0 ρ cos

(
φ− 2πz

b

)

(b) Find the equations of motion.
[20 points]

Clearly

pρ = mρ̇ , pφ = mρ2 φ̇ , pz = mż ,

and

Fρ = mρ φ̇2−U0 cos

(
φ−2πz

b

)
, Fφ = U0 ρ sin

(
φ−2πz

b

)
, Fz = −2πU0

b
ρ sin

(
φ−2πz

b

)
.

Thus, the equation of motion are

mρ̈ = mρ φ̇2 − U0 cos

(
φ− 2πz

b

)

mρ2 φ̈+ 2mρ ρ̇ φ̇ = U0 ρ sin

(
φ− 2πz

b

)

mz̈ = −2πU0

b
ρ sin

(
φ− 2πz

b

)
.

(c) Show that there exists a continuous one-parameter family of coordinate transformations
which leaves L invariant. Find the associated conserved quantity, Λ. Is anything else
conserved?
[20 points]

Due to the helical symmetry, we have that

φ→ φ+ ζ , z → z +
b

2π
ζ

is such a continuous one-parameter family of coordinate transformations. Since it leaves
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the combination φ− 2πz
b unchanged, we have that dL

dζ = 0, and

Λ = pρ
∂ρ

∂ζ

∣∣∣∣
ζ=0

+ pφ
∂φ

∂ζ

∣∣∣∣
ζ=0

+ pz
∂z

∂ζ

∣∣∣∣
ζ=0

= pφ +
b

2π
pz

= mρ2 φ̇+
mb

2π
ż

is the conserved Noether ‘charge’. The other conserved quantity is the Hamiltonian,

H = 1
2m
(
ρ̇2 + ρ2φ̇2 + ż2

)
+ U0 ρ cos

(
φ− 2πz

b

)
.

Note that H = T + U , because T is homogeneous of degree 2 and U is homogeneous of
degree 0 in the generalized velocities.
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17.6 F07 Physics 110A Final Exam

[1] Two masses and two springs are configured linearly and externally driven to rotate with
angular velocity ω about a fixed point on a horizontal surface, as shown in fig. 17.13. The
unstretched length of each spring is a.

Figure 17.13: Two masses and two springs rotate with angular velocity ω.

(a) Choose as generalized coordinates the radial distances r1,2 from the origin. Find the

Lagrangian L(r1, r2, ṙ1, ṙ2, t).
[5 points]

The Lagrangian is

L = 1
2m
(
ṙ21 + ṙ22 + ω2 r21 + ω2 r22

)
− 1

2k (r1 − a)2 − 1
2k (r2 − r1 − a)2 . (17.72)

(b) Derive expressions for all conserved quantities.
[5 points]

The Hamiltonian is conserved. Since the kinetic energy is not homogeneous of degree 2 in
the generalized velocities, H 6= T + U . Rather,

H =
∑

σ

pσ q̇σ − L (17.73)

= 1
2m
(
ṙ21 + ṙ22

)
− 1

2mω
2
(
r21 + r22) + 1

2k (r1 − a)2 + 1
2k (r2 − r1 − a)2 . (17.74)

We could define an effective potential

Ueff(r1, r2) = −1
2mω

2
(
r21 + r22) + 1

2k (r1 − a)2 + 1
2k (r2 − r1 − a)2 . (17.75)

Note the first term, which comes from the kinetic energy, has an interpretation of a fictitious
potential which generates a centrifugal force.
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(c) What equations determine the equilibrium radii r01 and r02? (You do not have to solve
these equations.)
[5 points]

The equations of equilibrium are Fσ = 0. Thus,

0 = F1 =
∂L

∂r1
= mω2r1 − k (r1 − a) + k (r2 − r1 − a) (17.76)

0 = F2 =
∂L

∂r2
= mω2r2 − k (r2 − r1 − a) . (17.77)

(d) Suppose now that the system is not externally driven, and that the angular coordinate
φ is a dynamical variable like r1 and r2. Find the Lagrangian L(r1, r2, φ, ṙ1, ṙ2, φ̇, t).
[5 points]

Now we have

L = 1
2m
(
ṙ21 + ṙ22 + r21 φ̇

2 + r22 φ̇
2
)
− 1

2k (r1 − a)2 − 1
2k (r2 − r1 − a)2 . (17.78)

(e) For the system described in part (d), find expressions for all conserved quantities.
[5 points]

There are two conserved quantities. One is pφ, owing to the fact the φ is cyclic in the
Lagrangian. I.e. φ→ φ+ ζ is a continuous one-parameter coordinate transformation which
leaves L invariant. We have

pφ =
∂L

∂φ̇
= m

(
r21 + r22

)
φ̇ . (17.79)

The second conserved quantity is the Hamiltonian, which is now H = T + U , since T is
homogeneous of degree 2 in the generalized velocities. Using conservation of momentum,
we can write

H = 1
2m
(
ṙ21 + ṙ22

)
+

p2
φ

2m(r21 + r22)
+ 1

2k (r1 − a)2 + 1
2k (r2 − r1 − a)2 . (17.80)

Once again, we can define an effective potential,

Ueff(r1, r2) =
p2
φ

2m(r21 + r22)
+ 1

2k (r1 − a)2 + 1
2k (r2 − r1 − a)2 , (17.81)

which is different than the effective potential from part (b). However in both this case and
in part (b), we have that the radial coordinates obey the equations of motion

mr̈j = −∂Ueff

∂rj
, (17.82)

for j = 1, 2. Note that this equation of motion follows directly from Ḣ = 0.
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Figure 17.14: A mass point m rolls inside a hoop of mass M and radius R which rolls
without slipping on a horizontal surface.

[2] A point mass m slides inside a hoop of radius R and mass M , which itself rolls without
slipping on a horizontal surface, as depicted in fig. 17.14.

Choose as general coordinates (X,φ, r), where X is the horizontal location of the center of
the hoop, φ is the angle the mass m makes with respect to the vertical (φ = 0 at the bottom
of the hoop), and r is the distance of the mass m from the center of the hoop. Since the
mass m slides inside the hoop, there is a constraint:

G(X,φ, r) = r −R = 0 .

Nota bene: The kinetic energy of the moving hoop, including translational and rotational
components (but not including the mass m), is Thoop = MẊ2 (i.e. twice the translational
contribution alone).

(a) Find the Lagrangian L(X,φ, r, Ẋ , φ̇, ṙ, t).
[5 points]

The Cartesian coordinates and velocities of the mass m are

x = X + r sinφ ẋ = Ẋ + ṙ sinφ+ rφ̇ cosφ (17.83)

y = R− r cosφ ẏ = −ṙ cosφ+ rφ̇ sinφ (17.84)

The Lagrangian is then

L =

T︷ ︸︸ ︷
(M + 1

2m)Ẋ2 + 1
2m(ṙ2 + r2φ̇2) +mẊ(ṙ sinφ+ rφ̇ cosφ) −

U︷ ︸︸ ︷
mg(R− r cosφ) (17.85)

Note that we are not allowed to substitute r = R and hence ṙ = 0 in the Lagrangian prior

to obtaining the equations of motion. Only after the generalized momenta and forces are
computed are we allowed to do so.

(b) Find all the generalized momenta pσ, the generalized forces Fσ, and the forces of
constraint Qσ.
[10 points]
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The generalized momenta are

pr =
∂L

∂ṙ
= mṙ +mẊ sinφ (17.86)

pX =
∂L

∂Ẋ
= (2M +m)Ẋ +mṙ sinφ+mrφ̇ cosφ (17.87)

pφ =
∂L

∂φ̇
= mr2φ̇+mrẊ cosφ (17.88)

The generalized forces and the forces of constraint are

Fr =
∂L

∂r
= mrφ̇2 +mẊφ̇ cosφ+mg cosφ Qr = λ

∂G

∂r
= λ (17.89)

FX =
∂L

∂X
= 0 QX = λ

∂G

∂X
= 0 (17.90)

Fφ =
∂L

∂φ
= mẊṙ cosφ−mẊφ̇ sinφ−mgr sinφ Qφ = λ

∂G

∂φ
= 0 . (17.91)

The equations of motion are
ṗσ = Fσ +Qσ . (17.92)

At this point, we can legitimately invoke the constraint r = R and set ṙ = 0 in all the pσ
and Fσ.

(c) Derive expressions for all conserved quantities.
[5 points]

There are two conserved quantities, which each derive from continuous invariances of the
Lagrangian which respect the constraint. The first is the total momentum pX :

FX = 0 =⇒ P ≡ pX = constant . (17.93)

The second conserved quantity is the Hamiltonian, which in this problem turns out to be
the total energy E = T +U . Incidentally, we can use conservation of P to write the energy
in terms of the variable φ alone. From

Ẋ =
P

2M +m
− mR cosφ

2M +m
φ̇ , (17.94)

we obtain

E = 1
2(2M +m)Ẋ2 + 1

2mR
2φ̇2 +mRẊφ̇ cosφ+mgR(1− cosφ)

=
αP 2

2m(1 + α)
+ 1

2mR
2

(
1 + α sin2φ

1 + α

)
φ̇2 +mgR(1− cosφ) , (17.95)

where we’ve defined the dimensionless ratio α ≡ m/2M . It is convenient to define the
quantity

Ω2 ≡
(

1 + α sin2φ

1 + α

)
φ̇2 + 2ω2

0(1− cosφ) , (17.96)
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with ω0 ≡
√
g/R. Clearly Ω2 is conserved, as it is linearly related to the energy E:

E =
αP 2

2m(1 + α)
+ 1

2mR
2Ω2 . (17.97)

(d) Derive a differential equation of motion involving the coordinate φ(t) alone. I.e. your
equation should not involve r, X, or the Lagrange multiplier λ.
[5 points]

From conservation of energy,

d(Ω2)

dt
= 0 =⇒

(
1 + α sin2φ

1 + α

)
φ̈+

(
α sinφ cosφ

1 + α

)
φ̇2 + ω2

0 sinφ = 0 , (17.98)

again with α = m/2M . Incidentally, one can use these results in eqns. 17.96 and 17.98 to

eliminate φ̇ and φ̈ in the expression for the constraint force, Qr = λ = ṗr − Fr. One finds

λ = −mR φ̇2 + ω2
0 cosφ

1 + α sin2φ

= − mRω2
0

(1 + α sin2φ)2

{
(1 + α)

(
Ω2

ω2
0

− 4 sin2(1
2φ)

)
+ (1 + α sin2φ) cosφ

}
. (17.99)

This last equation can be used to determine the angle of detachment, where λ vanishes and
the mass m falls off the inside of the hoop. This is because the hoop can only supply a
repulsive normal force to the mass m. This was worked out in detail in my lecture notes on
constrained systems.

[3] Two objects of masses m1 and m2 move under the influence of a central potential

U = k
∣∣r1 − r2

∣∣1/4.

(a) Sketch the effective potential Ueff(r) and the phase curves for the radial motion. Identify
for which energies the motion is bounded.
[5 points]

The effective potential is

Ueff(r) =
ℓ2

2µr2
+ krn (17.100)

with n = 1
4 . In sketching the effective potential, I have rendered it in dimensionless form,

Ueff(r) = E0 Ueff(r/r0) , (17.101)

where r0 = (ℓ2/nkµ)(n+2)−1
and E0 =

(
1
2 + 1

n

)
ℓ2/µr20, which are obtained from the results

of part (b). One then finds

Ueff(x) =
nx−2 + 2xn

n+ 2
. (17.102)
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Figure 17.15: The effective Ueff(r) = E0 Ueff(r/r0), where r0 and E0 are the radius and
energy of the circular orbit.

Although it is not obvious from the detailed sketch in fig. 17.15, the effective potential does
diverge, albeit slowly, for r → ∞. Clearly it also diverges for r → 0. Thus, the relative
coordinate motion is bounded for all energies; the allowed energies are E ≥ E0.

(b) What is the radius r0 of the circular orbit? Is it stable or unstable? Why?
[5 points]

For the general power law potential U(r) = krn, with nk > 0 (attractive force), setting

U ′
eff(r0) = 0 yields

− ℓ2

µr30
+ nkrn−1

0 = 0 . (17.103)

Thus,

r0 =

(
ℓ2

nkµ

) 1
n+2

=

(
4ℓ2

kµ

)4
9

. (17.104)

The orbit r(t) = r0 is stable because the effective potential has a local minimum at r = r0,
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i.e. U ′′
eff(r0) > 0. This is obvious from inspection of the graph of Ueff(r) but can also be

computed explicitly:

U ′′
eff(r0) =

3ℓ2

µr40
+ n(n− 1)krn0

= (n+ 2)
ℓ2

µr40
. (17.105)

Thus, provided n > −2 we have U ′′
eff(r0) > 0.

(c) For small perturbations about a circular orbit, the radial coordinate oscillates between
two values. Suppose we compare two systems, with ℓ′/ℓ = 2, but µ′ = µ and k′ = k. What
is the ratio ω′/ω of their frequencies of small radial oscillations?
[5 points]

From the radial coordinate equation µr̈ = −U ′
eff(r), we expand r = r0 + η and find

µη̈ = −U ′′
eff(r0) η +O(η2) . (17.106)

The radial oscillation frequency is then

ω = (n+ 2)1/2
ℓ

µr20
= (n+ 2)1/2 n

2
n+2 k

2
n+2 µ−

n
n+2 ℓ

n−2
n+2 . (17.107)

The ℓ dependence is what is key here. Clearly

ω′

ω
=

(
ℓ′

ℓ

)n−2
n+2

. (17.108)

In our case, with n = 1
4 , we have ω ∝ ℓ−7/9 and thus

ω′

ω
= 2−7/9 . (17.109)

(d) Find the equation of the shape of the slightly perturbed circular orbit: r(φ) = r0+η(φ).
That is, find η(φ). Sketch the shape of the orbit.
[5 points]

We have that η(φ) = η0 cos(βφ+ δ0), with

β =
ω

φ̇
=
µr20
ℓ
· ω =

√
n+ 2 . (17.110)

With n = 1
4 , we have β = 3

2 . Thus, the radial coordinate makes three oscillations for every
two rotations. The situation is depicted in fig. 17.21.

(e) What value of n would result in a perturbed orbit shaped like that in fig. 17.22?
[5 points]
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Figure 17.16: Radial oscillations with β = 3
2 .

Figure 17.17: Closed precession in a central potential U(r) = krn.

Clearly β =
√
n+ 2 = 4, in order that η(φ) = η0 cos(βφ+δ0) executes four complete periods

over the interval φ ∈ [0, 2π]. This means n = 14.

[4] Two masses and three springs are arranged as shown in fig. 17.18. You may assume
that in equilibrium the springs are all unstretched with length a. The masses and spring
constants are simple multiples of fundamental values, viz.

m1 = m , m2 = 4m , k1 = k , k2 = 4k , k3 = 28k . (17.111)

Figure 17.18: Coupled masses and springs.

(a) Find the Lagrangian.
[5 points]
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Choosing displacements relative to equilibrium as our generalized coordinates, we have

T = 1
2mη̇2

1 + 2mη̇2
2 (17.112)

and
U = 1

2k η
2
1 + 2k (η2 − η1)

2 + 14k η2
2 . (17.113)

Thus,

L = T − U = 1
2mη̇2

1 + 2mη̇2
2 − 1

2k η
2
1 − 2k (η2 − η1)

2 − 14k η2
2 . (17.114)

You are not required to find the equilibrium values of x1 and x2. However, suppose all the
unstretched spring lengths are a and the total distance between the walls is L. Then, with
x1,2 being the location of the masses relative to the left wall, we have

U = 1
2k1 (x1 − a)2 + 1

2k2 (x2 − x1 − a)2 + 1
2k3 (L− x2 − a)2 . (17.115)

Differentiating with respect to x1,2 then yields

∂U

∂x1
= k1 (x1 − a)− k2 (x2 − x1 − a) (17.116)

∂U

∂x2
= k2 (x2 − x1 − a)− k3 (L− x2 − a) . (17.117)

Setting these both to zero, we obtain

(k1 + k2)x1 − k2 x2 = (k1 − k2) a (17.118)

−k2 x1 + (k2 + k3)x2 = (k2 − k3) a+ k3L . (17.119)

Solving these two inhomogeneous coupled linear equations for x1,2 then yields the equilib-
rium positions. However, we don’t need to do this to solve the problem.

(b) Find the T and V matrices.
[5 points]

We have

Tσσ′ =
∂2T

∂η̇σ∂η̇σ′
=

(
m 0
0 4m

)
(17.120)

and

Vσσ′ =
∂2U

∂ησ∂ησ′
=

(
5k −4k
−4k 32k

)
. (17.121)

(c) Find the eigenfrequencies ω1 and ω2.
[5 points]

We have

Q(ω) ≡ ω2 T−V =

(
mω2 − 5k 4k

4k 4mω2 − 32k

)

= k

(
λ− 5 4

4 4λ− 32

)
, (17.122)
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where λ = ω2/ω2
0 , with ω0 =

√
k/m. Setting det Q(ω) = 0 then yields

λ2 − 13λ+ 36 = 0 , (17.123)

the roots of which are λ− = 4 and λ+ = 9. Thus, the eigenfrequencies are

ω− = 2ω0 , ω+ = 3ω0 . (17.124)

(d) Find the modal matrix Aσi.
[5 points]

To find the normal modes, we set

(
λ± − 5 4

4 4λ± − 32

)(
ψ

(±)
1

ψ
(±)
2

)
= 0 . (17.125)

This yields two linearly dependent equations, from which we can determine only the ratios

ψ
(±)
2 /ψ

(±)
1 . Plugging in for λ±, we find

(
ψ

(−)
1

ψ
(−)
2

)
= C−

(
4
1

)
,

(
ψ

(+)
1

ψ
(+)
2

)
= C+

(
1
−1

)
. (17.126)

We then normalize by demanding ψ
(i)
σ

Tσσ′ ψ
(j)
σ′ = δij . We can practically solve this by

inspection:
20m |C−|2 = 1 , 5m |C+|2 = 1 . (17.127)

We may now write the modal matrix,

A =
1√
5m

(
2 1
1
2 −1

)
. (17.128)

(e) Write down the most general solution for the motion of the system.
[5 points]

The most general solution is

(
η1(t)

η2(t)

)
= B−

(
4
1

)
cos(2ω0t+ ϕ−) +B+

(
1
−1

)
cos(3ω0t+ ϕ+) . (17.129)

Note that there are four constants of integration: B± and ϕ±.
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17.7 W08 Physics 110B Midterm Exam

[1] Two identical semi-infinite lengths of string are joined at a point of mass m which
moves vertically along a thin wire, as depicted in fig. 17.21. The mass moves with friction
coefficient γ, i.e. its equation of motion is

mz̈ + γż = F , (17.130)

where z is the vertical displacement of the mass, and F is the force on the mass due to
the string segments on either side. In this problem, gravity is to be neglected. It may be
convenient to define K ≡ 2τ/mc2 and Q ≡ γ/mc.

Figure 17.19: A point mass m joining two semi-infinite lengths of identical string moves
vertically along a thin wire with friction coefficient γ.

(a) The general solution with an incident wave from the left is written

y(x, t) =

{
f(ct− x) + g(ct+ x) (x < 0)

h(ct− x) (x > 0) .

Find two equations relating the functions f(ξ), g(ξ), and h(ξ).
[20 points]

The first equation is continuity at x = 0:

f(ξ) = g(ξ) + h(ξ)

where ξ = ct ranges over the real line [−∞,∞]. The second equation comes from Newton’s
2nd law F = ma applied to the mass point:

mÿ(0, t) + γ ẏ(0, t) = τ y′(0+, t)− τ y′(0−, t) .

Expressed in terms of the functions f(ξ), g(ξ), and h(ξ), and dividing through by mc2,
this gives

f ′′(ξ) + g′′(ξ) +Qf ′(ξ) +Qg′(ξ) = −1
2 K h′(ξ) + 1

2 K f ′(ξ)− 1
2 K g′(ξ).
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Integrating once, and invoking h = f + g, this second equation becomes

f ′(ξ) +Qf(ξ) = −g′(ξ)− (K +Q) g(ξ)

(b) Solve for the reflection amplitude r(k) = ĝ(k)/f̂ (k) and the transmission amplitude
t(k) = ĥ(k)/f̂ (k). Recall that

f(ξ) =

∞∫

−∞

dk

2π
f̂(k) eikξ ⇐⇒ f̂(k) =

∞∫

−∞

dξ f(ξ) e−ikξ ,

et cetera for the Fourier transforms. Also compute the sum of the reflection and transmission
coefficients,

∣∣r(k)
∣∣2 +

∣∣t(k)
∣∣2. Show that this sum is always less than or equal to unity, and

interpret this fact.
[20 points]

Using d/dξ −→ ik, we have

(Q+ ik) f̂ (k) = −(K +Q+ ik) ĝ(k) . (17.131)

Therefore,

r(k) =
ĝ(k)

f̂(k)
= − Q+ ik

Q+K + ik
(17.132)

To find the transmission amplitude, we invoke h(ξ) = f(ξ) + g(ξ), in which case

t(k) =
ĥ(k)

f̂(k)
= − K

Q+K + ik
(17.133)

The sum of reflection and transmission coefficients is

∣∣r(k)
∣∣2 +

∣∣t(k)
∣∣2 =

Q2 +K2 + k2

(Q+K)2 + k2
(17.134)

Clearly the RHS of this equation is bounded from above by unity, since both Q and K are
nonnegative.

(c) Find an expression in terms of the functions f , g, and h (and/or their derivatives) for
the rate Ė at which energy is lost by the string. Do this by evaluating the energy current
on either side of the point mass. Your expression should be an overall function of time t.
[10 points]

Recall the formulae for the energy density in a string,

E(x, t) = 1
2 µ ẏ

2(x, t) + 1
2 τ y

′2(x, t) (17.135)
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and
jE (x, t) = −τ ẏ(x, t) y′(x, t) . (17.136)

The energy continuity equation is ∂tE + ∂xjE = 0. Assuming jE(±∞, t) = 0, we have

dE

dt
=

0−∫

−∞

dx
∂E
∂t

+

∞∫

0+

dx
∂E
∂t

= −jE(∞, t) + jE (0+, t) + jE (−∞, t)− jE (0−, t) . (17.137)

Thus,

dE

dt
= cτ

([
g′(ct)

]2
+
[
h′(ct)

]2 −
[
f ′(ct)

]2)
(17.138)

Incidentally, if we integrate over all time, we obtain the total energy change in the string:

∆E = τ

∞∫

−∞

dξ
([
g′(ξ)

]2
+
[
h′(ξ)

]2 −
[
f ′(ξ)

]2)

= −τ
∞∫

−∞

dk

2π

2QK k2

(Q+K)2 + k2

∣∣f̂(k)
∣∣2 . (17.139)

Note that the initial energy in the string, at time t = −∞, is

E0 = τ

∞∫

−∞

dk

2π
k2
∣∣f̂(k)

∣∣2 . (17.140)

If the incident wave packet is very broad, say described by a Gaussian f(ξ) = A exp(−x2/2σ2)
with σK ≫ 1 and σQ ≫ 1, then k2 may be neglected in the denominator of eqn. 17.139,
in which case

∆E ≈ − 2QK

(Q+K)2
E0 ≥ −1

2E0 . (17.141)
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[2] Consider a rectangular cube of density ρ and dimensions a × b × c, as depicted in fig.
17.22.

Figure 17.20: A rectangular cube of dimensions a× b× c. In part (c), a massless torsional
fiber is attached along the diagonal of one of the b× c faces.

(a) Compute the inertia tensor Iαβ along body-fixed principle axes, with the origin at the
center of mass.
[15 points]

We first compute Izz:

ICM
zz = ρ

a/2∫

−a/2

dx

b/2∫

−b/2

dy

c/2∫

−c/2

dz
(
x2 + y2) = 1

12 M
(
a2 + b2

)
, (17.142)

where M = ρ abc. Corresponding expressions hold for the other moments of inertia. Thus,

ICM = 1
12M



b2 + c2 0 0

0 a2 + c2 0
0 0 a2 + b2


 (17.143)

(b) Shifting the origin to the center of either of the b×c faces, and keeping the axes parallel,
compute the new inertia tensor.
[15 points]

We shift the origin by a distance d = −1
2a x̂ and use the parallel axis theorem,

Iαβ(d) = Iαβ(0) +M
(
d2δαβ − dαdβ

)
, (17.144)

resulting in

I =



b2 + c2 0 0

0 4a2 + c2 0
0 0 4a2 + b2


 (17.145)

(c) A massless torsional fiber is (masslessly) welded along the diagonal of either b× c face.
The potential energy in this fiber is given by U(θ) = 1

2Y θ
2, where Y is a constant and θ is
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the angle of rotation of the fiber. Neglecting gravity, find an expression for the oscillation
frequency of the system.
[20 points]

Let θ be the twisting angle of the fiber. The kinetic energy in the fiber is

T = 1
2 Iαβ ωα ωβ

= 1
2 nα Iαβ nβ θ̇

2 , (17.146)

where

n̂ =
b ŷ√
b2 + c2

+
c ẑ√
b2 + c2

. (17.147)

We then find

Iaxis ≡ nα Iαβ nβ = 1
3Ma2 + 1

6M
b2 c2

b2 + c2
. (17.148)

The frequency of oscillation is then Ω =

√
Y/Iaxis, or

Ω =

√
6Y

M
· b2 + c2

2a2
(
b2 + c2

)
+ b2 c2

(17.149)
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17.8 W08 Physics 110B Final Exam

[1] Consider a string with uniform mass density µ and tension τ . At the point x = 0, the
string is connected to a spring of force constant K, as shown in the figure below.

Figure 17.21: A string connected to a spring.

(a) The general solution with an incident wave from the left is written

y(x, t) =

{
f(ct− x) + g(ct + x) (x < 0)

h(ct− x) (x > 0) .

Find two equations relating the functions f(ξ), g(ξ), and h(ξ). [10 points]

SOLUTION : The first equation is continuity at x = 0:

f(ξ) + g(ξ) = h(ξ)

where ξ = ct ranges over the real line [−∞,∞]. The second equation comes from Newton’s
2nd law F = ma applied to the mass point:

τ y′(0+, t)− τ y′(0−, t)−K y(0, t) = 0 ,

or

− τ h′(ξ) + τ f ′(ξ)− τ g′(ξ)−K
[
f(ξ) + g(ξ)

]
= 0

(b) Solve for the reflection amplitude r(k) = ĝ(k)/f̂(k) and the transmission amplitude
t(k) = ĥ(k)/f̂(k). Recall that

f(ξ) =

∞∫

−∞

dk

2π
f̂(k) eikξ ⇐⇒ f̂(k) =

∞∫

−∞

dξ f(ξ) e−ikξ ,
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et cetera for the Fourier transforms. Also compute the sum of the reflection and
transmission coefficients,

∣∣r(k)
∣∣2 +

∣∣t(k)
∣∣2. [10 points]

SOLUTION : Taking the Fourier transform of the two equations from part (a), we have

f̂(k) + ĝ(k) = ĥ(k)

f̂(k) + ĝ(k) =
iτk

K

[
f̂(k)− ĝ(k)− ĥ(k)

]
.

Solving for ĝ(k) and ĥ(k) in terms of f̂(k), we find

ĝ(k) = r(k) f̂(k) , ĥ(k) = t(k) f̂(k)

where the reflection coefficient r(k) and the transmission coefficient t(k) are given by

r(k) = − K

K + 2iτk
, t(k) =

2iτk

K + 2iτk

Note that

∣∣r(k)
∣∣2 +

∣∣t(k)
∣∣2 = 1

which says that the energy flux is conserved.

(c) For the Lagrangian density

L = 1
2µ

(
∂y

∂t

)2

− 1
2τ

(
∂y

∂x

)2

− 1
4γ

(
∂y

∂x

)4

,

find the Euler-Lagrange equations of motion. [7 points]

SOLUTION : For a Lagrangian density L(y, ẏ, y′), the Euler-Lagrange equations are

∂L
∂y

=
∂

∂t

(
∂L
∂ẏ

)
+

∂

∂x

(
∂L
∂y′

)
.

Thus, the wave equation for this system is

µ ÿ = τ y′′ + 3γ
(
y′
)2
y′′
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(d) For the Lagrangian density

L = 1
2µ

(
∂y

∂t

)2

− 1
2αy

2 − 1
2τ

(
∂y

∂x

)2

− 1
4β

(
∂2y

∂x2

)2

,

find the Euler-Lagrange equations of motion. [7 points]

SOLUTION : For a Lagrangian density L(y, ẏ, y′, y′′), the Euler-Lagrange equations are

∂L
∂y

=
∂

∂t

(
∂L
∂ẏ

)
+

∂

∂x

(
∂L
∂y′

)
− ∂2

∂x2

(
∂L
∂y′′

)
.

The last term arises upon integrating by parts twice in the integrand of the variation of the
action δS. Thus, the wave equation for this system is

µ ÿ = −αy + τ y′′ − β y′′′′
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[2] Consider single species population dynamics governed by the differential equation

dN

dt
= γN − N2

K
− HN

N + L
,

where γ, K, L, and H are constants.

(a) Show that by rescaling N and t that the above ODE is equivalent to

du

ds
= r u− u2 − hu

u+ 1
.

Give the definitions of u, s, r, and h. [5 points]

SOLUTION : From the denominator u+1 in the last term of the scaled equation, we see that
we need to define N = Lu. We then write t = τs, and substituting into the original ODE
yields

L

τ

du

ds
= γLu− L2

K
u2 − H u

u+ 1
.

Multiplying through by τ/L then gives

du

ds
= γτ u− Lτ

K
u2 − τH

L

u

u+ 1
.

We set the coefficient of the second term on the RHS equal to −1 to obtain the desired
form. Thus, τ = K/L and

u =
N

L
, s =

Lt

K
, r =

γK

L
, h =

KH

L2

(b) Find and solve the equation for all fixed points u∗(r, h). [10 points]

SOLUTION : In order for u to be a fixed point, we need u̇ = 0, which requires

u

(
r − u− h

u+ 1

)
= 0

One solution is always u∗ = 0 . The other roots are governed by the quadratic equation

(u− r)(u+ 1) + h = 0 ,

with roots at

u∗ = 1
2

(
r − 1±

√
(r + 1)2 − 4h

)
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Figure 17.22: Bifurcation curves for the equation u̇ = ru − u2 − hu/(u + 1). Red curve:
hSN(r) = 1

4 (r + 1)2, corresponding to saddle-node bifurcation. Blue curve: hT(r) = r,
corresponding to transcritical bifurcation.

(c) Sketch the upper right quadrant of the (r, h) plane. Show that there are four distinct
regions:

Region I : 3 real fixed points (two negative)

Region II : 3 real fixed points (one positive, one negative)

Region III : 3 real fixed points (two positive)

Region IV : 1 real fixed point

Find the equations for the boundaries of these regions. These boundaries are the
locations of bifurcations. Classify the bifurcations. (Note that negative values of u
are unphysical in the context of population dynamics, but are legitimate from a purely
mathematical standpoint.) [10 points]

SOLUTION : From the quadratic equation for the non-zero roots, we see the discriminant
vanishes for h = 1

4(r + 1)2. For h > 1
4 (r + 1)2, the discriminant is negative, and there is

one real root at u∗ = 0. Thus, the curve hSN(r) = 1
4 (r + 1)2 corresponds to a curve of

saddle-node bifurcations. Clearly the largest value of u∗ must be a stable node, because
for large u the −u2 dominates on the RHS of u̇ = f(u). In cases where there are three
fixed points, the middle one must be unstable, and the smallest stable. There is another
bifurcation, which occurs when the root at u∗ = 0 is degenerate. This occurs at

r − 1 =
√

(r + 1)2 − 4h =⇒ h = r .
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Figure 17.23: Examples of phase flows for the equation u̇ = ru−u2−hu/(u+1). (a) r = 1,
h = 0.22 (region I) ; (b) r = 1, h = 0.5 (region II) ; (c) r = 3, h = 3.8 (region III) ; (d)
r = 1, h = 1.5 (region IV).

This defines the curve for transcritical bifurcations: hT(r) = r . Note that hT(r) ≤ hSN(r),

since hSN(r) − hT(r) = 1
4(r − 1)2 ≥ 0. For h < r, one root is positive and one negative,

corresponding to region II.

The (r, h) control parameter space is depicted in fig. 17.22, with the regions I through IV
bounded by sections of the bifurcation curves, as shown.

(d) Sketch the phase flow for each of the regions I through IV. [8 points]

SOLUTION : See fig. 17.23.
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[3] Two brief relativity problems:

(a) A mirror lying in the (x, y) plane moves in the ẑ direction with speed u. A monochro-
matic ray of light making an angle θ with respect to the ẑ axis in the laboratory
frame reflects off the moving mirror. Find (i) the angle of reflection, measured in the
laboratory frame, and (ii) the frequency of the reflected light. [17 points]

SOLUTION : The reflection is simplest to consider in the frame of the mirror, where p̃z → −p̃z
upon reflection. In the laboratory frame, the 4-momentum of a photon in the beam is

Pµ =
(
E , 0 , E sin θ , E cos θ

)
,

where, without loss of generality, we have taken the light ray to lie in the (y, z) plane, and
where we are taking c = 1. Lorentz transforming to the frame of the mirror, we have

P̃µ =
(
γE(1 − u cos θ) , 0 , E sin θ , γE(−u+ cos θ)

)
.

which follows from the general Lorentz boost of a 4-vector Qµ,

Q̃0 = γQ0 − γuQ‖

Q̃‖ = −γuQ0 + γQ‖

Q̃⊥ = Q⊥ ,

where frame K̃ moves with velocity u with respect to frame K.

Upon reflection, we reverse the sign of P̃ 3 in the frame of the mirror:

P̃ ′µ =
(
γE(1 − u cos θ) , 0 , E sin θ , γE(u− cos θ)

)
.

Transforming this back to the laboratory frame yields

E′ = P ′0 = γ2E (1− u cos θ) + γ2E u (u− cos θ)

= γ2E
(
1− 2u cos θ + u2

)

P ′1 = 0

P ′2 = E sin θ

P ′3 = γ2E u (1− u cos θ) + γ2E (u− cos θ)

= −γ2E
(
(1 + u2) cos θ − 2u

)

Thus, the angle of reflection is

cos θ′ =

∣∣∣∣
P ′3

P ′0

∣∣∣∣ =
(1 + u2) cos θ − 2u

1− 2u cos θ + u2
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and the reflected photon frequency is ν ′ = E′/h, where

E′ =

(
1− 2u cos θ + u2

1− u2

)
E

(b) Consider the reaction π+ +n→ K+ +Λ0. What is the threshold kinetic energy of the
pion to create kaon at an angle of 90◦ in the rest frame of the neutron? Express your
answer in terms of the masses mπ, mn, mK, and mΛ. [16 points]

SOLUTION : We have conservation of 4-momentum, giving

Pµπ + Pµn = PµK + PµΛ .

Thus,

P 2
Λ = (Eπ + En − EK)2 − (Pπ + Pn − PK)2

= (E2
π − P 2

π ) + (E2
n − P 2

n ) + (E2
K − P 2

K)

+ 2EπEn − 2EπEK − 2EnEK − 2Pπ · Pn + 2Pπ · PK + 2Pn · PK

= E2
Λ − P 2

Λ = m2
Λ .

Now in the laboratory frame the neutron is at rest, so

Pµn = (mn , 0) .

Thus, Pπ · Pn = Pn · PK = 0. We are also told that the pion and the kaon make an angle

of 90◦ in the laboratory frame, hence Pπ ·PK = 0. And of course for each particle we have
E2 −P2 = m2. Thus, we have

m2
Λ = m2

π +m2
n +m2

K − 2mnEK + 2(mn −EK)Eπ ,

or, solving for Eπ,

Eπ =
m2

Λ −m2
π −m2

n −m2
K + 2mnEK

2(mn − EK)
.

The threshold pion energy is the minimum value of Eπ, which must occur when EK takes

its minimum allowed value, EK = mK. Thus,

Tπ = Eπ −mπ ≥
m2

Λ −m2
π −m2

n −m2
K + 2mnmK

2(mn −mK)
−mπ
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[4] Sketch what a bletch might look like. [10,000 quatloos extra credit]

[-50 points if it looks like your professor]

Figure 17.24: The putrid bletch, from the (underwater) Jkroo forest, on planet Barney.


